Merge pull request #32 from PapaTutuWawa/rework

Rework omemo_dart to finally enable (hopefully) stable E2EE in Moxxy.
This commit is contained in:
PapaTutuWawa 2023-06-18 21:25:36 +02:00 committed by GitHub
commit 96ca643d26
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
47 changed files with 3634 additions and 4540 deletions

View File

@ -54,3 +54,14 @@
## 0.4.3
- Fix bug that causes ratchets to be unable to decrypt anything after receiving a heartbeat with a completely new session
## 0.5.0
This version is a complete rework of omemo_dart!
- Removed events from `OmemoManager`
- Removed `OmemoSessionManager`
- Removed serialization/deserialization code
- Replace exceptions with errors inside a result type
- Ratchets and trust data is now loaded and cached on demand
- Accessing the trust manager must happen via `withTrustManager`

View File

@ -28,22 +28,32 @@ Include `omemo_dart` in your `pubspec.yaml` like this:
dependencies:
omemo_dart:
hosted: https://git.polynom.me/api/packages/PapaTutuWawa/pub
version: ^0.4.3
version: ^0.5.0
# [...]
# [...]
```
## Contributing
### Example
Due to issues with `protobuf`, `omemo_dart` reimplements the Protobuf encoding for the required
OMEMO messages. As such, `protobuf` is only a dependency for testing that the serialisation and
deserialisation of the custom implementation. In order to run tests, you need the Protbuf
compiler. After that, making sure that
the [Dart Protobuf compiler addon](https://pub.dev/packages/protoc_plugin) and the
Protobuf compiler itself is in your PATH,
run `protoc -I=./protobuf/ --dart_out=lib/protobuf/ ./protobuf/schema.proto` in the
repository's root to generate the real Protobuf bindings.
This repository includes a documented ["example"](./example/omemo_dart_example.dart) that explains the basic usage of the library while
leaving out the XMPP specific bits. For a more functional and integrated example, see the `omemo_client.dart` example from
[moxxmpp](https://codeberg.org/moxxy/moxxmpp).
### Persistence
By default, `omemo_dart` uses in-memory implementations for everything. For a real-world application, this is unsuitable as OMEMO devices would be constantly added.
In order to allow persistence, your application needs to keep track of the following:
- The `OmemoDevice` assigned to the `OmemoManager`
- `JID -> [int]`: The device list for each JID
- `(JID, device) -> Ratchet`: The actual ratchet
If you also use the `BlindTrustBeforeVerificationTrustManager`, you additionally need to keep track of:
- `(JID, device) -> (int, bool)`: The trust level and the enablement state
## Contributing
When submitting a PR, please run the linter using `dart analyze` and make sure that all
tests still pass using `dart test`.

View File

@ -9,8 +9,5 @@ linter:
analyzer:
exclude:
- "lib/protobuf/*.dart"
# TODO: Remove once OmemoSessionManager is gone
- "test/omemo_test.dart"
- "lib/src/protobuf/*.dart"
- "example/omemo_dart_example.dart"
- "test/serialisation_test.dart"

View File

@ -35,6 +35,10 @@ void main() async {
// This needs to be wired into your XMPP library's OMEMO implementation.
// For simplicity, we use an empty function and imagine it works.
(jid) async {},
// This function is called whenever our own device bundle has to be republished to our PEP node.
// This needs to be wired into your XMPP library's OMEMO implementation.
// For simplicity, we use an empty function and imagine it works.
(device) async {},
);
// Alice now wants to chat with Bob at his bare Jid "bob@other.server". To make things
@ -42,7 +46,7 @@ void main() async {
// request it using PEP and then convert the device bundle into a OmemoBundle object.
final bobManager = OmemoManager(
await OmemoDevice.generateNewDevice(bobJid),
MemoryBTBVTrustManager(),
BlindTrustBeforeVerificationTrustManager(),
(result, recipient) async => {},
(jid) async => [],
(jid, id) async => null,
@ -145,6 +149,11 @@ void main() async {
/// The text of the <payload /> element, if it exists. If not, then the message might be
/// a hearbeat, where no payload is sent. In that case, use null.
payload,
/// Since we did not receive this message due to a catch-up mechanism, like MAM, we
/// set this to false. If we, however, did use a catch-up mechanism, we must set this
/// to true to prevent the OPKs from being replaced.
false,
),
);

View File

@ -8,9 +8,10 @@ export 'src/omemo/bundle.dart';
export 'src/omemo/device.dart';
export 'src/omemo/encrypted_key.dart';
export 'src/omemo/encryption_result.dart';
export 'src/omemo/events.dart';
export 'src/omemo/errors.dart';
export 'src/omemo/fingerprint.dart';
export 'src/omemo/omemomanager.dart';
export 'src/omemo/omemo.dart';
export 'src/omemo/ratchet_data.dart';
export 'src/omemo/ratchet_map_key.dart';
export 'src/omemo/stanza.dart';
export 'src/trust/base.dart';

View File

@ -0,0 +1,11 @@
/// The overarching assumption is that we use Ed25519 keys for the identity keys
const omemoX3DHInfoString = 'OMEMO X3DH';
/// The info used for when encrypting the AES key for the actual payload.
const omemoPayloadInfoString = 'OMEMO Payload';
/// Info string for ENCRYPT
const encryptHkdfInfoString = 'OMEMO Message Key Material';
/// Amount of messages we may skip per session
const maxSkip = 1000;

View File

@ -1,5 +1,7 @@
import 'dart:convert';
import 'package:cryptography/cryptography.dart';
import 'package:moxlib/moxlib.dart';
import 'package:omemo_dart/src/errors.dart';
import 'package:omemo_dart/src/keys.dart';
/// Performs X25519 with [kp] and [pk]. If [identityKey] is set, then
@ -92,7 +94,7 @@ Future<List<int>> aes256CbcEncrypt(
/// A small helper function to make AES-256-CBC easier. Decrypt [ciphertext] using [key] as
/// the encryption key and [iv] as the IV. Returns the ciphertext.
Future<List<int>> aes256CbcDecrypt(
Future<Result<MalformedCiphertextError, List<int>>> aes256CbcDecrypt(
List<int> ciphertext,
List<int> key,
List<int> iv,
@ -100,13 +102,19 @@ Future<List<int>> aes256CbcDecrypt(
final algorithm = AesCbc.with256bits(
macAlgorithm: MacAlgorithm.empty,
);
return algorithm.decrypt(
try {
return Result(
await algorithm.decrypt(
NoMacSecretBox(
ciphertext,
nonce: iv,
),
secretKey: SecretKey(key),
),
);
} catch (ex) {
return Result(MalformedCiphertextError(ex));
}
}
/// OMEMO often uses the output of a HMAC-SHA-256 truncated to its first 16 bytes.

View File

@ -1,60 +0,0 @@
import 'package:omemo_dart/src/crypto.dart';
import 'package:omemo_dart/src/errors.dart';
import 'package:omemo_dart/src/helpers.dart';
import 'package:omemo_dart/src/protobuf/omemo_authenticated_message.dart';
import 'package:omemo_dart/src/protobuf/omemo_message.dart';
/// Info string for ENCRYPT
const encryptHkdfInfoString = 'OMEMO Message Key Material';
/// Signals ENCRYPT function as specified by OMEMO 0.8.3.
/// Encrypt [plaintext] using the message key [mk], given associated_data [associatedData]
/// and the AD output from the X3DH [sessionAd].
Future<List<int>> encrypt(
List<int> mk,
List<int> plaintext,
List<int> associatedData,
List<int> sessionAd,
) async {
// Generate encryption, authentication key and IV
final keys = await deriveEncryptionKeys(mk, encryptHkdfInfoString);
final ciphertext =
await aes256CbcEncrypt(plaintext, keys.encryptionKey, keys.iv);
final header =
OmemoMessage.fromBuffer(associatedData.sublist(sessionAd.length))
..ciphertext = ciphertext;
final headerBytes = header.writeToBuffer();
final hmacInput = concat([sessionAd, headerBytes]);
final hmacResult = await truncatedHmac(hmacInput, keys.authenticationKey);
final message = OmemoAuthenticatedMessage()
..mac = hmacResult
..message = headerBytes;
return message.writeToBuffer();
}
/// Signals DECRYPT function as specified by OMEMO 0.8.3.
/// Decrypt [ciphertext] with the message key [mk], given the associated_data [associatedData]
/// and the AD output from the X3DH.
Future<List<int>> decrypt(
List<int> mk,
List<int> ciphertext,
List<int> associatedData,
List<int> sessionAd,
) async {
// Generate encryption, authentication key and IV
final keys = await deriveEncryptionKeys(mk, encryptHkdfInfoString);
// Assumption ciphertext is a OMEMOAuthenticatedMessage
final message = OmemoAuthenticatedMessage.fromBuffer(ciphertext);
final header = OmemoMessage.fromBuffer(message.message!);
final hmacInput = concat([sessionAd, header.writeToBuffer()]);
final hmacResult = await truncatedHmac(hmacInput, keys.authenticationKey);
if (!listsEqual(hmacResult, message.mac!)) {
throw InvalidMessageHMACException();
}
return aes256CbcDecrypt(header.ciphertext!, keys.encryptionKey, keys.iv);
}

View File

@ -1,47 +1,24 @@
import 'dart:convert';
import 'package:cryptography/cryptography.dart';
import 'package:hex/hex.dart';
import 'package:meta/meta.dart';
import 'package:moxlib/moxlib.dart';
import 'package:omemo_dart/src/common/constants.dart';
import 'package:omemo_dart/src/crypto.dart';
import 'package:omemo_dart/src/double_ratchet/crypto.dart';
import 'package:omemo_dart/src/double_ratchet/kdf.dart';
import 'package:omemo_dart/src/errors.dart';
import 'package:omemo_dart/src/helpers.dart';
import 'package:omemo_dart/src/keys.dart';
import 'package:omemo_dart/src/protobuf/omemo_message.dart';
/// Amount of messages we may skip per session
const maxSkip = 1000;
class RatchetStep {
const RatchetStep(this.header, this.ciphertext);
final OmemoMessage header;
final List<int> ciphertext;
}
import 'package:omemo_dart/src/protobuf/schema.pb.dart';
@immutable
class SkippedKey {
const SkippedKey(this.dh, this.n);
factory SkippedKey.fromJson(Map<String, dynamic> data) {
return SkippedKey(
OmemoPublicKey.fromBytes(
base64.decode(data['public']! as String),
KeyPairType.x25519,
),
data['n']! as int,
);
}
/// The DH public key for which we skipped a message key.
final OmemoPublicKey dh;
final int n;
Future<Map<String, dynamic>> toJson() async {
return {
'public': base64.encode(await dh.getBytes()),
'n': n,
};
}
/// The associated number of the message key we skipped.
final int n;
@override
bool operator ==(Object other) {
@ -52,6 +29,28 @@ class SkippedKey {
int get hashCode => dh.hashCode ^ n.hashCode;
}
@immutable
class KeyExchangeData {
const KeyExchangeData(
this.pkId,
this.spkId,
this.ik,
this.ek,
);
/// The id of the used OPK.
final int pkId;
/// The id of the used SPK.
final int spkId;
/// The ephemeral key used while the key exchange.
final OmemoPublicKey ek;
/// The identity key used in the key exchange.
final OmemoPublicKey ik;
}
class OmemoDoubleRatchet {
OmemoDoubleRatchet(
this.dhs, // DHs
@ -66,77 +65,9 @@ class OmemoDoubleRatchet {
this.sessionAd,
this.mkSkipped, // MKSKIPPED
this.acknowledged,
this.kexTimestamp,
this.kex,
);
factory OmemoDoubleRatchet.fromJson(Map<String, dynamic> data) {
/*
{
'dhs': 'base/64/encoded',
'dhs_pub': 'base/64/encoded',
'dhr': null | 'base/64/encoded',
'rk': 'base/64/encoded',
'cks': null | 'base/64/encoded',
'ckr': null | 'base/64/encoded',
'ns': 0,
'nr': 0,
'pn': 0,
'ik_pub': null | 'base/64/encoded',
'session_ad': 'base/64/encoded',
'acknowledged': true | false,
'kex_timestamp': int,
'kex': 'base/64/encoded',
'mkskipped': [
{
'key': 'base/64/encoded',
'public': 'base/64/encoded',
'n': 0
}, ...
]
}
*/
// NOTE: Dart has some issues with just casting a List<dynamic> to List<Map<...>>, as
// such we need to convert the items by hand.
final mkSkipped = Map<SkippedKey, List<int>>.fromEntries(
(data['mkskipped']! as List<dynamic>)
.map<MapEntry<SkippedKey, List<int>>>(
(entry) {
final map = entry as Map<String, dynamic>;
final key = SkippedKey.fromJson(map);
return MapEntry(
key,
base64.decode(map['key']! as String),
);
},
),
);
return OmemoDoubleRatchet(
OmemoKeyPair.fromBytes(
base64.decode(data['dhs_pub']! as String),
base64.decode(data['dhs']! as String),
KeyPairType.x25519,
),
decodeKeyIfNotNull(data, 'dhr', KeyPairType.x25519),
base64.decode(data['rk']! as String),
base64DecodeIfNotNull(data, 'cks'),
base64DecodeIfNotNull(data, 'ckr'),
data['ns']! as int,
data['nr']! as int,
data['pn']! as int,
OmemoPublicKey.fromBytes(
base64.decode(data['ik_pub']! as String),
KeyPairType.ed25519,
),
base64.decode(data['session_ad']! as String),
mkSkipped,
data['acknowledged']! as bool,
data['kex_timestamp']! as int,
data['kex'] as String?,
);
}
/// Sending DH keypair
OmemoKeyPair dhs;
@ -161,16 +92,14 @@ class OmemoDoubleRatchet {
/// for verification purposes
final OmemoPublicKey ik;
/// Associated data for this ratchet.
final List<int> sessionAd;
/// List of skipped message keys.
final Map<SkippedKey, List<int>> mkSkipped;
/// The point in time at which we performed the kex exchange to create this ratchet.
/// Precision is milliseconds since epoch.
int kexTimestamp;
/// The key exchange that was used for initiating the session.
final String? kex;
final KeyExchangeData kex;
/// Indicates whether we received an empty OMEMO message after building a session with
/// the device.
@ -181,21 +110,22 @@ class OmemoDoubleRatchet {
/// a X3DH. [ik] refers to Bob's (the receiver's) IK public key.
static Future<OmemoDoubleRatchet> initiateNewSession(
OmemoPublicKey spk,
int spkId,
OmemoPublicKey ik,
OmemoPublicKey ownIk,
OmemoPublicKey ek,
List<int> sk,
List<int> ad,
int timestamp,
int pkId,
) async {
final dhs = await OmemoKeyPair.generateNewPair(KeyPairType.x25519);
final dhr = spk;
final rk = await kdfRk(sk, await omemoDH(dhs, dhr, 0));
final cks = rk;
final rk = await kdfRk(sk, await omemoDH(dhs, spk, 0));
return OmemoDoubleRatchet(
dhs,
dhr,
rk,
cks,
spk,
List.from(rk),
List.from(rk),
null,
0,
0,
@ -204,8 +134,12 @@ class OmemoDoubleRatchet {
ad,
{},
false,
timestamp,
'',
KeyExchangeData(
pkId,
spkId,
ownIk,
ek,
),
);
}
@ -215,10 +149,12 @@ class OmemoDoubleRatchet {
/// Alice's (the initiator's) IK public key.
static Future<OmemoDoubleRatchet> acceptNewSession(
OmemoKeyPair spk,
int spkId,
OmemoPublicKey ik,
int pkId,
OmemoPublicKey ek,
List<int> sk,
List<int> ad,
int kexTimestamp,
) async {
return OmemoDoubleRatchet(
spk,
@ -233,72 +169,52 @@ class OmemoDoubleRatchet {
ad,
{},
true,
kexTimestamp,
null,
KeyExchangeData(
pkId,
spkId,
ik,
ek,
),
);
}
Future<Map<String, dynamic>> toJson() async {
final mkSkippedSerialised =
List<Map<String, dynamic>>.empty(growable: true);
for (final entry in mkSkipped.entries) {
final result = await entry.key.toJson();
result['key'] = base64.encode(entry.value);
mkSkippedSerialised.add(result);
}
return {
'dhs': base64.encode(await dhs.sk.getBytes()),
'dhs_pub': base64.encode(await dhs.pk.getBytes()),
'dhr': dhr != null ? base64.encode(await dhr!.getBytes()) : null,
'rk': base64.encode(rk),
'cks': cks != null ? base64.encode(cks!) : null,
'ckr': ckr != null ? base64.encode(ckr!) : null,
'ns': ns,
'nr': nr,
'pn': pn,
'ik_pub': base64.encode(await ik.getBytes()),
'session_ad': base64.encode(sessionAd),
'mkskipped': mkSkippedSerialised,
'acknowledged': acknowledged,
'kex_timestamp': kexTimestamp,
'kex': kex,
};
}
/// Returns the OMEMO compatible fingerprint of the ratchet session.
Future<String> getOmemoFingerprint() async {
final curveKey = await ik.toCurve25519();
return HEX.encode(await curveKey.getBytes());
}
Future<List<int>?> _trySkippedMessageKeys(
OmemoMessage header,
List<int> ciphertext,
) async {
final key = SkippedKey(
OmemoPublicKey.fromBytes(header.dhPub!, KeyPairType.x25519),
header.n!,
/// Performs a single ratchet step in case we received a new
/// public key in [header].
Future<void> _dhRatchet(OMEMOMessage header) async {
pn = ns;
ns = 0;
nr = 0;
dhr = OmemoPublicKey.fromBytes(header.dhPub, KeyPairType.x25519);
final newRk1 = await kdfRk(
rk,
await omemoDH(
dhs,
dhr!,
0,
),
);
if (mkSkipped.containsKey(key)) {
final mk = mkSkipped[key]!;
mkSkipped.remove(key);
rk = List.from(newRk1);
ckr = List.from(newRk1);
return decrypt(
mk,
ciphertext,
concat([sessionAd, header.writeToBuffer()]),
sessionAd,
dhs = await OmemoKeyPair.generateNewPair(KeyPairType.x25519);
final newRk2 = await kdfRk(
rk,
await omemoDH(
dhs,
dhr!,
0,
),
);
rk = List.from(newRk2);
cks = List.from(newRk2);
}
return null;
}
Future<void> _skipMessageKeys(int until) async {
/// Skip (and keep track of) message keys until our receive counter is
/// equal to [until]. If we would skip too many messages, returns
/// a [SkippingTooManyKeysError]. If not, returns null.
Future<OmemoError?> _skipMessageKeys(int until) async {
if (nr + maxSkip < until) {
throw SkippingTooManyMessagesException();
return SkippingTooManyKeysError();
}
if (ckr != null) {
@ -306,88 +222,140 @@ class OmemoDoubleRatchet {
final newCkr = await kdfCk(ckr!, kdfCkNextChainKey);
final mk = await kdfCk(ckr!, kdfCkNextMessageKey);
ckr = newCkr;
mkSkipped[SkippedKey(dhr!, nr)] = mk;
nr++;
}
}
return null;
}
Future<void> _dhRatchet(OmemoMessage header) async {
pn = ns;
ns = 0;
nr = 0;
dhr = OmemoPublicKey.fromBytes(header.dhPub!, KeyPairType.x25519);
final newRk = await kdfRk(rk, await omemoDH(dhs, dhr!, 0));
rk = List.from(newRk);
ckr = List.from(newRk);
dhs = await OmemoKeyPair.generateNewPair(KeyPairType.x25519);
final newNewRk = await kdfRk(rk, await omemoDH(dhs, dhr!, 0));
rk = List.from(newNewRk);
cks = List.from(newNewRk);
}
/// Encrypt [plaintext] using the Double Ratchet.
Future<RatchetStep> ratchetEncrypt(List<int> plaintext) async {
final newCks = await kdfCk(cks!, kdfCkNextChainKey);
final mk = await kdfCk(cks!, kdfCkNextMessageKey);
cks = newCks;
final header = OmemoMessage()
..dhPub = await dhs.pk.getBytes()
..pn = pn
..n = ns;
ns++;
return RatchetStep(
header,
await encrypt(
mk,
plaintext,
concat([sessionAd, header.writeToBuffer()]),
sessionAd,
),
);
}
/// Decrypt a [ciphertext] that was sent with the header [header] using the Double
/// Ratchet. Returns the decrypted (raw) plaintext.
/// Decrypt [ciphertext] using keys derived from the message key [mk]. Also computes the
/// HMAC from the [OMEMOMessage] embedded in [message].
///
/// Throws an SkippingTooManyMessagesException if too many messages were to be skipped.
Future<List<int>> ratchetDecrypt(
OmemoMessage header,
/// If the computed HMAC does not match the HMAC in [message], returns
/// [InvalidMessageHMACError]. If it matches, returns the decrypted
/// payload.
Future<Result<OmemoError, List<int>>> _decrypt(
OMEMOAuthenticatedMessage message,
List<int> ciphertext,
List<int> mk,
) async {
// Check if we skipped too many messages
final plaintext = await _trySkippedMessageKeys(header, ciphertext);
if (plaintext != null) {
return plaintext;
final keys = await deriveEncryptionKeys(mk, encryptHkdfInfoString);
final hmacInput = concat([sessionAd, message.message]);
final hmacResult = await truncatedHmac(hmacInput, keys.authenticationKey);
if (!listsEqual(hmacResult, message.mac)) {
return Result(InvalidMessageHMACError());
}
final dhPubMatches = listsEqual(
header.dhPub!,
(await dhr?.getBytes()) ?? <int>[],
final plaintext =
await aes256CbcDecrypt(ciphertext, keys.encryptionKey, keys.iv);
if (plaintext.isType<MalformedCiphertextError>()) {
return Result(plaintext.get<MalformedCiphertextError>());
}
return Result(plaintext.get<List<int>>());
}
/// Checks whether we could decrypt the payload in [header] with a skipped key. If yes,
/// attempts to decrypt it. If not, returns null.
///
/// If the decryption is successful, returns the plaintext payload. If an error occurs, like
/// an [InvalidMessageHMACError], that is returned instead.
Future<Result<OmemoError, List<int>?>> _trySkippedMessageKeys(
OMEMOAuthenticatedMessage message,
OMEMOMessage header,
) async {
final key = SkippedKey(
OmemoPublicKey.fromBytes(header.dhPub, KeyPairType.x25519),
header.n,
);
if (!dhPubMatches) {
await _skipMessageKeys(header.pn!);
if (mkSkipped.containsKey(key)) {
final mk = mkSkipped[key]!;
mkSkipped.remove(key);
return _decrypt(message, header.ciphertext, mk);
}
return const Result(null);
}
/// Decrypt the payload (deeply) embedded in [message].
///
/// If everything goes well, returns the plaintext payload. If an error occurs, that
/// is returned instead.
Future<Result<OmemoError, List<int>>> ratchetDecrypt(
OMEMOAuthenticatedMessage message,
) async {
final header = OMEMOMessage.fromBuffer(message.message);
// Try skipped keys
final plaintextRaw = await _trySkippedMessageKeys(message, header);
if (plaintextRaw.isType<OmemoError>()) {
// Propagate the error
return Result(plaintextRaw.get<OmemoError>());
}
final plaintext = plaintextRaw.get<List<int>?>();
if (plaintext != null) {
return Result(plaintext);
}
if (dhr == null || !listsEqual(header.dhPub, await dhr!.getBytes())) {
final skipResult1 = await _skipMessageKeys(header.pn);
if (skipResult1 != null) {
return Result(skipResult1);
}
await _dhRatchet(header);
}
await _skipMessageKeys(header.n!);
final newCkr = await kdfCk(ckr!, kdfCkNextChainKey);
final mk = await kdfCk(ckr!, kdfCkNextMessageKey);
ckr = newCkr;
nr++;
return decrypt(
mk,
ciphertext,
concat([sessionAd, header.writeToBuffer()]),
sessionAd,
);
final skipResult2 = await _skipMessageKeys(header.n);
if (skipResult2 != null) {
return Result(skipResult2);
}
final ck = await kdfCk(ckr!, kdfCkNextChainKey);
final mk = await kdfCk(ckr!, kdfCkNextMessageKey);
ckr = ck;
nr++;
return _decrypt(message, header.ciphertext, mk);
}
/// Encrypt the payload [plaintext] using the double ratchet session.
Future<OMEMOAuthenticatedMessage> ratchetEncrypt(List<int> plaintext) async {
// Advance the ratchet
final ck = await kdfCk(cks!, kdfCkNextChainKey);
final mk = await kdfCk(cks!, kdfCkNextMessageKey);
cks = ck;
// Generate encryption, authentication key and IV
final keys = await deriveEncryptionKeys(mk, encryptHkdfInfoString);
final ciphertext =
await aes256CbcEncrypt(plaintext, keys.encryptionKey, keys.iv);
// Fill-in the header and serialize it here so we do it only once
final header = OMEMOMessage()
..dhPub = await dhs.pk.getBytes()
..pn = pn
..n = ns
..ciphertext = ciphertext;
final headerBytes = header.writeToBuffer();
// Increment the send counter
ns++;
final newAd = concat([sessionAd, headerBytes]);
final hmac = await truncatedHmac(newAd, keys.authenticationKey);
return OMEMOAuthenticatedMessage()
..mac = hmac
..message = headerBytes;
}
/// Returns a copy of the ratchet.
OmemoDoubleRatchet clone() {
return OmemoDoubleRatchet(
dhs,
@ -402,27 +370,16 @@ class OmemoDoubleRatchet {
sessionAd,
Map<SkippedKey, List<int>>.from(mkSkipped),
acknowledged,
kexTimestamp,
kex,
);
}
OmemoDoubleRatchet cloneWithKex(String kex) {
return OmemoDoubleRatchet(
dhs,
dhr,
rk,
cks != null ? List<int>.from(cks!) : null,
ckr != null ? List<int>.from(ckr!) : null,
ns,
nr,
pn,
ik,
sessionAd,
Map<SkippedKey, List<int>>.from(mkSkipped),
acknowledged,
kexTimestamp,
kex,
/// Computes the fingerprint of the double ratchet, according to
/// XEP-0384.
Future<String> get fingerprint async {
final curveKey = await ik.toCurve25519();
return HEX.encode(
await curveKey.getBytes(),
);
}
@ -454,7 +411,6 @@ class OmemoDoubleRatchet {
ns == other.ns &&
nr == other.nr &&
pn == other.pn &&
listsEqual(sessionAd, other.sessionAd) &&
kexTimestamp == other.kexTimestamp;
listsEqual(sessionAd, other.sessionAd);
}
}

View File

@ -8,7 +8,7 @@ const kdfRkInfoString = 'OMEMO Root Chain';
const kdfCkNextMessageKey = 0x01;
const kdfCkNextChainKey = 0x02;
/// Signals KDF_CK function as specified by OMEMO 0.8.0.
/// Signals KDF_CK function as specified by OMEMO 0.8.3.
Future<List<int>> kdfCk(List<int> ck, int constant) async {
final hkdf = Hkdf(hmac: Hmac(Sha256()), outputLength: 32);
final result = await hkdf.deriveKey(
@ -19,7 +19,7 @@ Future<List<int>> kdfCk(List<int> ck, int constant) async {
return result.extractBytes();
}
/// Signals KDF_RK function as specified by OMEMO 0.8.0.
/// Signals KDF_RK function as specified by OMEMO 0.8.3.
Future<List<int>> kdfRk(List<int> rk, List<int> dhOut) async {
final algorithm = Hkdf(
hmac: Hmac(Sha256()),

View File

@ -1,61 +1,39 @@
abstract class OmemoException {}
abstract class OmemoError {}
/// Triggered during X3DH if the signature if the SPK does verify to the actual SPK.
class InvalidSignatureException extends OmemoException implements Exception {
String errMsg() =>
'The signature of the SPK does not match the provided signature';
}
class InvalidKeyExchangeSignatureError extends OmemoError {}
/// Triggered by the Double Ratchet if the computed HMAC does not match the attached HMAC.
/// Triggered by the Session Manager if the computed HMAC does not match the attached HMAC.
class InvalidMessageHMACException extends OmemoException implements Exception {
String errMsg() => 'The computed HMAC does not match the provided HMAC';
}
class InvalidMessageHMACError extends OmemoError {}
/// Triggered by the Double Ratchet if skipping messages would cause skipping more than
/// MAXSKIP messages
class SkippingTooManyMessagesException extends OmemoException
implements Exception {
String errMsg() => 'Skipping messages would cause a skip bigger than MAXSKIP';
}
class SkippingTooManyKeysError extends OmemoError {}
/// Triggered by the Session Manager if the message key is not encrypted for the device.
class NotEncryptedForDeviceException extends OmemoException
implements Exception {
String errMsg() => 'Not encrypted for this device';
}
/// Triggered by the Session Manager when there is no key for decrypting the message.
class NoDecryptionKeyException extends OmemoException implements Exception {
String errMsg() => 'No key available for decrypting the message';
}
class NotEncryptedForDeviceError extends OmemoError {}
/// Triggered by the Session Manager when the identifier of the used Signed Prekey
/// is neither the current SPK's identifier nor the old one's.
class UnknownSignedPrekeyException extends OmemoException implements Exception {
String errMsg() => 'Unknown Signed Prekey used.';
}
/// Triggered by the Session Manager when the received Key Exchange message does not meet
/// the requirement that a key exchange, given that the ratchet already exists, must be
/// sent after its creation.
class InvalidKeyExchangeException extends OmemoException implements Exception {
String errMsg() => 'The key exchange was sent before the last kex finished';
}
/// Triggered by the Session Manager when a message's sequence number is smaller than we
/// expect it to be.
class MessageAlreadyDecryptedException extends OmemoException
implements Exception {
String errMsg() => 'The message has already been decrypted';
}
class UnknownSignedPrekeyError extends OmemoError {}
/// Triggered by the OmemoManager when we could not encrypt a message as we have
/// no key material available. That happens, for example, when we want to create a
/// ratchet session with a JID we had no session with but fetching the device bundle
/// failed.
class NoKeyMaterialAvailableException extends OmemoException
implements Exception {
String errMsg() =>
'No key material available to create a ratchet session with';
class NoKeyMaterialAvailableError extends OmemoError {}
/// A non-key-exchange message was received that was encrypted for our device, but we have no ratchet with
/// the device that sent the message.
class NoSessionWithDeviceError extends OmemoError {}
/// Caused when the AES-256 CBC decryption failed.
class MalformedCiphertextError extends OmemoError {
MalformedCiphertextError(this.ex);
/// The exception that was raised while decryption.
final Object ex;
}
/// Caused by an empty <key /> element
class MalformedEncryptedKeyError extends OmemoError {}

View File

@ -1,7 +1,5 @@
import 'dart:convert';
import 'dart:math';
import 'package:cryptography/cryptography.dart';
import 'package:omemo_dart/src/keys.dart';
/// Flattens [inputs] and concatenates the elements.
List<int> concat(List<List<int>> inputs) {
@ -43,41 +41,35 @@ int generateRandom32BitNumber() {
return Random.secure().nextInt(4294967295 /*pow(2, 32) - 1*/);
}
OmemoPublicKey? decodeKeyIfNotNull(
Map<String, dynamic> map,
String key,
KeyPairType type,
) {
if (map[key] == null) return null;
/// Describes the differences between two lists in terms of its items.
class ListDiff<T> {
ListDiff(this.added, this.removed);
return OmemoPublicKey.fromBytes(
base64.decode(map[key]! as String),
type,
);
/// The items that were added.
final List<T> added;
/// The items that were removed.
final List<T> removed;
}
List<int>? base64DecodeIfNotNull(Map<String, dynamic> map, String key) {
if (map[key] == null) return null;
return base64.decode(map[key]! as String);
extension AppendToListOrCreateExtension<K, V> on Map<K, List<V>> {
/// Create or append [value] to the list identified with key [key].
void appendOrCreate(K key, V value, {bool checkExistence = false}) {
if (containsKey(key)) {
if (!checkExistence) {
this[key]!.add(value);
}
if (!this[key]!.contains(value)) {
this[key]!.add(value);
}
} else {
this[key] = [value];
}
}
}
String? base64EncodeIfNotNull(List<int>? bytes) {
if (bytes == null) return null;
return base64.encode(bytes);
}
OmemoKeyPair? decodeKeyPairIfNotNull(String? pk, String? sk, KeyPairType type) {
if (pk == null || sk == null) return null;
return OmemoKeyPair.fromBytes(
base64.decode(pk),
base64.decode(sk),
type,
);
}
int getTimestamp() {
return DateTime.now().millisecondsSinceEpoch;
extension StringFromBase64Extension on String {
/// Base64-decode this string. Useful for doing `someString?.fromBase64()` instead
/// of `someString != null ? base64Decode(someString) : null`.
List<int> fromBase64() => base64Decode(this);
}

View File

@ -1,2 +0,0 @@
/// The info used for when encrypting the AES key for the actual payload.
const omemoPayloadInfoString = 'OMEMO Payload';

View File

@ -3,7 +3,15 @@ import 'package:omemo_dart/src/errors.dart';
@immutable
class DecryptionResult {
const DecryptionResult(this.payload, this.error);
const DecryptionResult(this.payload, this.usedOpkId, this.error);
/// The decrypted payload or null, if it was an empty OMEMO message.
final String? payload;
final OmemoException? error;
/// In case a key exchange has been performed: The id of the used OPK. Useful for
/// replacing the OPK after a message catch-up.
final int? usedOpkId;
/// The error that occurred during decryption or null, if no error occurred.
final OmemoError? error;
}

View File

@ -22,76 +22,6 @@ class OmemoDevice {
this.opks,
);
/// Deserialize the Device
factory OmemoDevice.fromJson(Map<String, dynamic> data) {
// NOTE: We use the way OpenSSH names their keys, meaning that ik is the Identity
// Keypair's private key, while ik_pub refers to the Identity Keypair's public
// key.
/*
{
'jid': 'alice@...',
'id': 123,
'ik': 'base/64/encoded',
'ik_pub': 'base/64/encoded',
'spk': 'base/64/encoded',
'spk_pub': 'base/64/encoded',
'spk_id': 123,
'spk_sig': 'base/64/encoded',
'old_spk': 'base/64/encoded',
'old_spk_pub': 'base/64/encoded',
'old_spk_id': 122,
'opks': [
{
'id': 0,
'public': 'base/64/encoded',
'private': 'base/64/encoded'
}, ...
]
}
*/
// NOTE: Dart has some issues with just casting a List<dynamic> to List<Map<...>>, as
// such we need to convert the items by hand.
final opks = Map<int, OmemoKeyPair>.fromEntries(
(data['opks']! as List<dynamic>).map<MapEntry<int, OmemoKeyPair>>(
(opk) {
final map = opk as Map<String, dynamic>;
return MapEntry(
map['id']! as int,
OmemoKeyPair.fromBytes(
base64.decode(map['public']! as String),
base64.decode(map['private']! as String),
KeyPairType.x25519,
),
);
},
),
);
return OmemoDevice(
data['jid']! as String,
data['id']! as int,
OmemoKeyPair.fromBytes(
base64.decode(data['ik_pub']! as String),
base64.decode(data['ik']! as String),
KeyPairType.ed25519,
),
OmemoKeyPair.fromBytes(
base64.decode(data['spk_pub']! as String),
base64.decode(data['spk']! as String),
KeyPairType.x25519,
),
data['spk_id']! as int,
base64.decode(data['spk_sig']! as String),
decodeKeyPairIfNotNull(
data['old_spk_pub'] as String?,
data['old_spk'] as String?,
KeyPairType.x25519,
),
data['old_spk_id'] as int?,
opks,
);
}
/// Generate a completely new device, i.e. cryptographic identity.
static Future<OmemoDevice> generateNewDevice(
String jid, {
@ -105,7 +35,16 @@ class OmemoDevice {
final opks = <int, OmemoKeyPair>{};
for (var i = 0; i < opkAmount; i++) {
opks[i] = await OmemoKeyPair.generateNewPair(KeyPairType.x25519);
// Generate unique ids for each key
while (true) {
final opkId = generateRandom32BitNumber();
if (opks.containsKey(opkId)) {
continue;
}
opks[opkId] = await OmemoKeyPair.generateNewPair(KeyPairType.x25519);
break;
}
}
return OmemoDevice(jid, id, ik, spk, spkId, signature, null, null, opks);
@ -142,7 +81,18 @@ class OmemoDevice {
/// a new Device object that copies over everything but replaces said key.
@internal
Future<OmemoDevice> replaceOnetimePrekey(int id) async {
opks[id] = await OmemoKeyPair.generateNewPair(KeyPairType.x25519);
opks.remove(id);
// Generate a new unique id for the OPK.
while (true) {
final newId = generateRandom32BitNumber();
if (opks.containsKey(newId)) {
continue;
}
opks[newId] = await OmemoKeyPair.generateNewPair(KeyPairType.x25519);
break;
}
return OmemoDevice(
jid,
@ -221,34 +171,6 @@ class OmemoDevice {
return HEX.encode(await curveKey.getBytes());
}
/// Serialise the device information.
Future<Map<String, dynamic>> toJson() async {
/// Serialise the OPKs
final serialisedOpks = List<Map<String, dynamic>>.empty(growable: true);
for (final entry in opks.entries) {
serialisedOpks.add({
'id': entry.key,
'public': base64.encode(await entry.value.pk.getBytes()),
'private': base64.encode(await entry.value.sk.getBytes()),
});
}
return {
'jid': jid,
'id': id,
'ik': base64.encode(await ik.sk.getBytes()),
'ik_pub': base64.encode(await ik.pk.getBytes()),
'spk': base64.encode(await spk.sk.getBytes()),
'spk_pub': base64.encode(await spk.pk.getBytes()),
'spk_id': spkId,
'spk_sig': base64.encode(spkSignature),
'old_spk': base64EncodeIfNotNull(await oldSpk?.sk.getBytes()),
'old_spk_pub': base64EncodeIfNotNull(await oldSpk?.pk.getBytes()),
'old_spk_id': oldSpkId,
'opks': serialisedOpks,
};
}
@visibleForTesting
Future<bool> equals(OmemoDevice other) async {
var opksMatch = true;

View File

@ -1,12 +1,23 @@
import 'dart:convert';
import 'package:meta/meta.dart';
/// EncryptedKey is the intermediary format of a <key /> element in the OMEMO message's
/// <keys /> header.
@immutable
class EncryptedKey {
const EncryptedKey(this.jid, this.rid, this.value, this.kex);
final String jid;
const EncryptedKey(this.rid, this.value, this.kex);
/// The id of the device the key is encrypted for.
final int rid;
/// The base64-encoded payload.
final String value;
/// Flag indicating whether the payload is a OMEMOKeyExchange (true) or
/// an OMEMOAuthenticatedMessage (false).
final bool kex;
/// The base64-decoded payload.
List<int> get data => base64Decode(value);
}

View File

@ -1,7 +1,6 @@
import 'package:meta/meta.dart';
import 'package:omemo_dart/src/errors.dart';
import 'package:omemo_dart/src/omemo/encrypted_key.dart';
import 'package:omemo_dart/src/omemo/ratchet_map_key.dart';
import 'package:omemo_dart/src/omemo/errors.dart';
@immutable
class EncryptionResult {
@ -9,7 +8,7 @@ class EncryptionResult {
this.ciphertext,
this.encryptedKeys,
this.deviceEncryptionErrors,
this.jidEncryptionErrors,
this.canSend,
);
/// The actual message that was encrypted.
@ -17,17 +16,12 @@ class EncryptionResult {
/// Mapping of the device Id to the key for decrypting ciphertext, encrypted
/// for the ratchet with said device Id.
final List<EncryptedKey> encryptedKeys;
final Map<String, List<EncryptedKey>> encryptedKeys;
/// Mapping of a ratchet map keys to a possible exception.
final Map<RatchetMapKey, OmemoException> deviceEncryptionErrors;
/// Mapping of a JID to
final Map<String, List<EncryptToJidError>> deviceEncryptionErrors;
/// Mapping of a JID to a possible exception.
final Map<String, OmemoException> jidEncryptionErrors;
/// True if the encryption was a success. This means that we could encrypt for
/// at least one ratchet.
bool isSuccess(int numberOfRecipients) =>
encryptedKeys.isNotEmpty &&
jidEncryptionErrors.length < numberOfRecipients;
/// A flag indicating that the message could be sent like that, i.e. we were able
/// to encrypt to at-least one device per recipient.
final bool canSend;
}

12
lib/src/omemo/errors.dart Normal file
View File

@ -0,0 +1,12 @@
import 'package:omemo_dart/src/errors.dart';
/// Returned on encryption, if encryption failed for some reason.
class EncryptToJidError extends OmemoError {
EncryptToJidError(this.device, this.error);
/// The device the error occurred with
final int? device;
/// The actual error.
final OmemoError error;
}

View File

@ -1,44 +0,0 @@
import 'package:omemo_dart/src/double_ratchet/double_ratchet.dart';
import 'package:omemo_dart/src/omemo/device.dart';
abstract class OmemoEvent {}
/// Triggered when a ratchet has been modified
class RatchetModifiedEvent extends OmemoEvent {
RatchetModifiedEvent(
this.jid,
this.deviceId,
this.ratchet,
this.added,
this.replaced,
);
final String jid;
final int deviceId;
final OmemoDoubleRatchet ratchet;
/// Indicates whether the ratchet has just been created (true) or just modified (false).
final bool added;
/// Indicates whether the ratchet has been replaced (true) or not.
final bool replaced;
}
/// Triggered when a ratchet has been removed and should be removed from storage.
class RatchetRemovedEvent extends OmemoEvent {
RatchetRemovedEvent(this.jid, this.deviceId);
final String jid;
final int deviceId;
}
/// Triggered when the device map has been modified
class DeviceListModifiedEvent extends OmemoEvent {
DeviceListModifiedEvent(this.list);
final Map<String, List<int>> list;
}
/// Triggered by the OmemoSessionManager when our own device bundle was modified
/// and thus should be republished.
class DeviceModifiedEvent extends OmemoEvent {
DeviceModifiedEvent(this.device);
final OmemoDevice device;
}

1040
lib/src/omemo/omemo.dart Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,854 +0,0 @@
import 'dart:async';
import 'dart:collection';
import 'dart:convert';
import 'package:collection/collection.dart';
import 'package:cryptography/cryptography.dart';
import 'package:hex/hex.dart';
import 'package:logging/logging.dart';
import 'package:meta/meta.dart';
import 'package:omemo_dart/src/crypto.dart';
import 'package:omemo_dart/src/double_ratchet/double_ratchet.dart';
import 'package:omemo_dart/src/errors.dart';
import 'package:omemo_dart/src/helpers.dart';
import 'package:omemo_dart/src/keys.dart';
import 'package:omemo_dart/src/omemo/bundle.dart';
import 'package:omemo_dart/src/omemo/constants.dart';
import 'package:omemo_dart/src/omemo/decryption_result.dart';
import 'package:omemo_dart/src/omemo/device.dart';
import 'package:omemo_dart/src/omemo/encrypted_key.dart';
import 'package:omemo_dart/src/omemo/encryption_result.dart';
import 'package:omemo_dart/src/omemo/events.dart';
import 'package:omemo_dart/src/omemo/fingerprint.dart';
import 'package:omemo_dart/src/omemo/ratchet_map_key.dart';
import 'package:omemo_dart/src/omemo/stanza.dart';
import 'package:omemo_dart/src/protobuf/omemo_authenticated_message.dart';
import 'package:omemo_dart/src/protobuf/omemo_key_exchange.dart';
import 'package:omemo_dart/src/protobuf/omemo_message.dart';
import 'package:omemo_dart/src/trust/base.dart';
import 'package:omemo_dart/src/x3dh/x3dh.dart';
import 'package:synchronized/synchronized.dart';
class _InternalDecryptionResult {
const _InternalDecryptionResult(
this.ratchetCreated,
this.ratchetReplaced,
this.payload,
) : assert(
!ratchetCreated || !ratchetReplaced,
'Ratchet must be either replaced or created',
);
final bool ratchetCreated;
final bool ratchetReplaced;
final String? payload;
}
class OmemoManager {
OmemoManager(
this._device,
this._trustManager,
this.sendEmptyOmemoMessageImpl,
this.fetchDeviceListImpl,
this.fetchDeviceBundleImpl,
this.subscribeToDeviceListNodeImpl,
);
final Logger _log = Logger('OmemoManager');
/// Functions for connecting with the OMEMO library
/// Send an empty OMEMO:2 message using the encrypted payload @result to
/// @recipientJid.
final Future<void> Function(EncryptionResult result, String recipientJid)
sendEmptyOmemoMessageImpl;
/// Fetch the list of device ids associated with @jid. If the device list cannot be
/// fetched, return null.
final Future<List<int>?> Function(String jid) fetchDeviceListImpl;
/// Fetch the device bundle for the device with id @id of jid. If it cannot be fetched, return null.
final Future<OmemoBundle?> Function(String jid, int id) fetchDeviceBundleImpl;
/// Subscribe to the device list PEP node of @jid.
final Future<void> Function(String jid) subscribeToDeviceListNodeImpl;
/// Map bare JID to its known devices
Map<String, List<int>> _deviceList = {};
/// Map bare JIDs to whether we already requested the device list once
final Map<String, bool> _deviceListRequested = {};
/// Map bare a ratchet key to its ratchet. Note that this is also locked by
/// _ratchetCriticalSectionLock.
Map<RatchetMapKey, OmemoDoubleRatchet> _ratchetMap = {};
/// Map bare JID to whether we already tried to subscribe to the device list node.
final Map<String, bool> _subscriptionMap = {};
/// For preventing a race condition in encryption/decryption
final Map<String, Queue<Completer<void>>> _ratchetCriticalSectionQueue = {};
final Lock _ratchetCriticalSectionLock = Lock();
/// The OmemoManager's trust management
final TrustManager _trustManager;
TrustManager get trustManager => _trustManager;
/// Our own keys...
final Lock _deviceLock = Lock();
// ignore: prefer_final_fields
OmemoDevice _device;
/// The event bus of the session manager
final StreamController<OmemoEvent> _eventStreamController =
StreamController<OmemoEvent>.broadcast();
Stream<OmemoEvent> get eventStream => _eventStreamController.stream;
/// Enter the critical section for performing cryptographic operations on the ratchets
Future<void> _enterRatchetCriticalSection(String jid) async {
final completer = await _ratchetCriticalSectionLock.synchronized(() {
if (_ratchetCriticalSectionQueue.containsKey(jid)) {
final c = Completer<void>();
_ratchetCriticalSectionQueue[jid]!.addLast(c);
return c;
}
_ratchetCriticalSectionQueue[jid] = Queue();
return null;
});
if (completer != null) {
await completer.future;
}
}
/// Leave the critical section for the ratchets.
Future<void> _leaveRatchetCriticalSection(String jid) async {
await _ratchetCriticalSectionLock.synchronized(() {
if (_ratchetCriticalSectionQueue.containsKey(jid)) {
if (_ratchetCriticalSectionQueue[jid]!.isEmpty) {
_ratchetCriticalSectionQueue.remove(jid);
} else {
_ratchetCriticalSectionQueue[jid]!.removeFirst().complete();
}
}
});
}
Future<String?> _decryptAndVerifyHmac(
List<int>? ciphertext,
List<int> keyAndHmac,
) async {
// Empty OMEMO messages should just have the key decrypted and/or session set up.
if (ciphertext == null) {
return null;
}
final key = keyAndHmac.sublist(0, 32);
final hmac = keyAndHmac.sublist(32, 48);
final derivedKeys = await deriveEncryptionKeys(key, omemoPayloadInfoString);
final computedHmac =
await truncatedHmac(ciphertext, derivedKeys.authenticationKey);
if (!listsEqual(hmac, computedHmac)) {
throw InvalidMessageHMACException();
}
return utf8.decode(
await aes256CbcDecrypt(
ciphertext,
derivedKeys.encryptionKey,
derivedKeys.iv,
),
);
}
/// Add a session [ratchet] with the [deviceId] to the internal tracking state.
/// NOTE: Must be called from within the ratchet critical section.
void _addSession(String jid, int deviceId, OmemoDoubleRatchet ratchet) {
// Add the bundle Id
if (!_deviceList.containsKey(jid)) {
_deviceList[jid] = [deviceId];
// Commit the device map
_eventStreamController.add(DeviceListModifiedEvent(_deviceList));
} else {
// Prevent having the same device multiple times in the list
if (!_deviceList[jid]!.contains(deviceId)) {
_deviceList[jid]!.add(deviceId);
// Commit the device map
_eventStreamController.add(DeviceListModifiedEvent(_deviceList));
}
}
// Add the ratchet session
final key = RatchetMapKey(jid, deviceId);
_ratchetMap[key] = ratchet;
// Commit the ratchet
_eventStreamController
.add(RatchetModifiedEvent(jid, deviceId, ratchet, true, false));
}
/// Build a new session with the user at [jid] with the device [deviceId] using data
/// from the key exchange [kex]. In case [kex] contains an unknown Signed Prekey
/// identifier an UnknownSignedPrekeyException will be thrown.
Future<OmemoDoubleRatchet> _addSessionFromKeyExchange(
String jid,
int deviceId,
OmemoKeyExchange kex,
) async {
// Pick the correct SPK
final device = await getDevice();
OmemoKeyPair spk;
if (kex.spkId == _device.spkId) {
spk = _device.spk;
} else if (kex.spkId == _device.oldSpkId) {
spk = _device.oldSpk!;
} else {
throw UnknownSignedPrekeyException();
}
final kexResult = await x3dhFromInitialMessage(
X3DHMessage(
OmemoPublicKey.fromBytes(kex.ik!, KeyPairType.ed25519),
OmemoPublicKey.fromBytes(kex.ek!, KeyPairType.x25519),
kex.pkId!,
),
spk,
device.opks.values.elementAt(kex.pkId!),
device.ik,
);
final ratchet = await OmemoDoubleRatchet.acceptNewSession(
spk,
OmemoPublicKey.fromBytes(kex.ik!, KeyPairType.ed25519),
kexResult.sk,
kexResult.ad,
getTimestamp(),
);
// Notify the trust manager
await trustManager.onNewSession(jid, deviceId);
return ratchet;
}
/// Create a ratchet session initiated by Alice to the user with Jid [jid] and the device
/// [deviceId] from the bundle [bundle].
@visibleForTesting
Future<OmemoKeyExchange> addSessionFromBundle(
String jid,
int deviceId,
OmemoBundle bundle,
) async {
final device = await getDevice();
final kexResult = await x3dhFromBundle(
bundle,
device.ik,
);
final ratchet = await OmemoDoubleRatchet.initiateNewSession(
bundle.spk,
bundle.ik,
kexResult.sk,
kexResult.ad,
getTimestamp(),
);
await _trustManager.onNewSession(jid, deviceId);
_addSession(jid, deviceId, ratchet);
return OmemoKeyExchange()
..pkId = kexResult.opkId
..spkId = bundle.spkId
..ik = await device.ik.pk.getBytes()
..ek = await kexResult.ek.pk.getBytes();
}
/// In case a decryption error occurs, the Double Ratchet spec says to just restore
/// the ratchet to its old state. As such, this function restores the ratchet at
/// [mapKey] with [oldRatchet].
/// NOTE: Must be called from within the ratchet critical section
void _restoreRatchet(RatchetMapKey mapKey, OmemoDoubleRatchet oldRatchet) {
_log.finest(
'Restoring ratchet ${mapKey.jid}:${mapKey.deviceId} to ${oldRatchet.nr}',
);
_ratchetMap[mapKey] = oldRatchet;
// Commit the ratchet
_eventStreamController.add(
RatchetModifiedEvent(
mapKey.jid,
mapKey.deviceId,
oldRatchet,
false,
false,
),
);
}
/// Attempt to decrypt [ciphertext]. [keys] refers to the <key /> elements inside the
/// <keys /> element with a "jid" attribute matching our own. [senderJid] refers to the
/// bare Jid of the sender. [senderDeviceId] refers to the "sid" attribute of the
/// <encrypted /> element.
/// [timestamp] refers to the time the message was sent. This might be either what the
/// server tells you via "XEP-0203: Delayed Delivery" or the point in time at which
/// you received the stanza, if no Delayed Delivery element was found.
///
/// If the received message is an empty OMEMO message, i.e. there is no <payload />
/// element, then [ciphertext] must be set to null. In this case, this function
/// will return null as there is no message to be decrypted. This, however, is used
/// to set up sessions or advance the ratchets.
Future<_InternalDecryptionResult> _decryptMessage(
List<int>? ciphertext,
String senderJid,
int senderDeviceId,
List<EncryptedKey> keys,
int timestamp,
) async {
// Try to find a session we can decrypt with.
var device = await getDevice();
final rawKey = keys.firstWhereOrNull((key) => key.rid == device.id);
if (rawKey == null) {
throw NotEncryptedForDeviceException();
}
final decodedRawKey = base64.decode(rawKey.value);
List<int>? keyAndHmac;
OmemoAuthenticatedMessage authMessage;
OmemoMessage? message;
// If the ratchet already existed, we store it. If it didn't, oldRatchet will stay
// null.
final ratchetKey = RatchetMapKey(senderJid, senderDeviceId);
final oldRatchet = getRatchet(ratchetKey)?.clone();
if (rawKey.kex) {
final kex = OmemoKeyExchange.fromBuffer(decodedRawKey);
authMessage = kex.message!;
message = OmemoMessage.fromBuffer(authMessage.message!);
// Guard against old key exchanges
if (oldRatchet != null) {
_log.finest(
'KEX for existent ratchet ${ratchetKey.toJsonKey()}. ${oldRatchet.kexTimestamp} > $timestamp: ${oldRatchet.kexTimestamp > timestamp}',
);
if (oldRatchet.kexTimestamp > timestamp) {
throw InvalidKeyExchangeException();
}
}
final r =
await _addSessionFromKeyExchange(senderJid, senderDeviceId, kex);
// Try to decrypt with the new ratchet r
try {
keyAndHmac =
await r.ratchetDecrypt(message, authMessage.writeToBuffer());
final result = await _decryptAndVerifyHmac(ciphertext, keyAndHmac);
// Add the new ratchet
_addSession(senderJid, senderDeviceId, r);
// Replace the OPK
await _deviceLock.synchronized(() async {
device = await device.replaceOnetimePrekey(kex.pkId!);
// Commit the device
_eventStreamController.add(DeviceModifiedEvent(device));
});
// Commit the ratchet
_eventStreamController.add(
RatchetModifiedEvent(
senderJid,
senderDeviceId,
r,
oldRatchet == null,
oldRatchet != null,
),
);
return _InternalDecryptionResult(
oldRatchet == null,
oldRatchet != null,
result,
);
} catch (ex) {
_log.finest('Kex failed due to $ex. Not proceeding with kex.');
}
} else {
authMessage = OmemoAuthenticatedMessage.fromBuffer(decodedRawKey);
message = OmemoMessage.fromBuffer(authMessage.message!);
}
final devices = _deviceList[senderJid];
if (devices?.contains(senderDeviceId) != true) {
throw NoDecryptionKeyException();
}
// TODO(PapaTutuWawa): When receiving a message that is not an OMEMOKeyExchange from a device there is no session with, clients SHOULD create a session with that device and notify it about the new session by responding with an empty OMEMO message as per Sending a message.
// We can guarantee that the ratchet exists at this point in time
final ratchet = getRatchet(ratchetKey)!;
try {
if (rawKey.kex) {
keyAndHmac =
await ratchet.ratchetDecrypt(message, authMessage.writeToBuffer());
} else {
keyAndHmac = await ratchet.ratchetDecrypt(message, decodedRawKey);
}
} catch (_) {
_restoreRatchet(ratchetKey, oldRatchet!);
rethrow;
}
// Commit the ratchet
_eventStreamController.add(
RatchetModifiedEvent(
senderJid,
senderDeviceId,
ratchet,
false,
false,
),
);
try {
return _InternalDecryptionResult(
false,
false,
await _decryptAndVerifyHmac(ciphertext, keyAndHmac),
);
} catch (_) {
_restoreRatchet(ratchetKey, oldRatchet!);
rethrow;
}
}
/// Returns, if it exists, the ratchet associated with [key].
/// NOTE: Must be called from within the ratchet critical section.
@visibleForTesting
OmemoDoubleRatchet? getRatchet(RatchetMapKey key) => _ratchetMap[key];
/// Figure out what bundles we have to still build a session with.
Future<List<OmemoBundle>> _fetchNewBundles(String jid) async {
// Check if we already requested the device list for [jid]
List<int> bundlesToFetch;
if (!_deviceListRequested.containsKey(jid) ||
!_deviceList.containsKey(jid)) {
// We don't have an up-to-date version of the device list
final newDeviceList = await fetchDeviceListImpl(jid);
if (newDeviceList == null) return [];
_deviceList[jid] = newDeviceList;
bundlesToFetch = newDeviceList.where((id) {
return !_ratchetMap.containsKey(RatchetMapKey(jid, id)) ||
_deviceList[jid]?.contains(id) == false;
}).toList();
// Trigger an event with the new device list
_eventStreamController.add(DeviceListModifiedEvent(_deviceList));
} else {
// We already have an up-to-date version of the device list
bundlesToFetch = _deviceList[jid]!
.where((id) => !_ratchetMap.containsKey(RatchetMapKey(jid, id)))
.toList();
}
if (bundlesToFetch.isNotEmpty) {
_log.finest('Fetching bundles $bundlesToFetch for $jid');
}
final device = await getDevice();
final newBundles = List<OmemoBundle>.empty(growable: true);
for (final id in bundlesToFetch) {
if (jid == device.jid && id == device.id) continue;
final bundle = await fetchDeviceBundleImpl(jid, id);
if (bundle != null) newBundles.add(bundle);
}
return newBundles;
}
/// Encrypt the key [plaintext] for all known bundles of the Jids in [jids]. Returns a
/// map that maps the device Id to the ciphertext of [plaintext].
///
/// If [plaintext] is null, then the result will be an empty OMEMO message, i.e. one that
/// does not contain a <payload /> element. This means that the ciphertext attribute of
/// the result will be null as well.
/// NOTE: Must be called within the ratchet critical section
Future<EncryptionResult> _encryptToJids(
List<String> jids,
String? plaintext,
) async {
final encryptedKeys = List<EncryptedKey>.empty(growable: true);
var ciphertext = const <int>[];
var keyPayload = const <int>[];
if (plaintext != null) {
// Generate the key and encrypt the plaintext
final key = generateRandomBytes(32);
final keys = await deriveEncryptionKeys(key, omemoPayloadInfoString);
ciphertext = await aes256CbcEncrypt(
utf8.encode(plaintext),
keys.encryptionKey,
keys.iv,
);
final hmac = await truncatedHmac(ciphertext, keys.authenticationKey);
keyPayload = concat([key, hmac]);
} else {
keyPayload = List<int>.filled(32, 0x0);
}
final kex = <RatchetMapKey, OmemoKeyExchange>{};
for (final jid in jids) {
for (final newSession in await _fetchNewBundles(jid)) {
kex[RatchetMapKey(jid, newSession.id)] = await addSessionFromBundle(
newSession.jid,
newSession.id,
newSession,
);
}
}
// We assume that the user already checked if the session exists
final deviceEncryptionErrors = <RatchetMapKey, OmemoException>{};
final jidEncryptionErrors = <String, OmemoException>{};
for (final jid in jids) {
final devices = _deviceList[jid];
if (devices == null) {
_log.severe('Device list does not exist for $jid.');
jidEncryptionErrors[jid] = NoKeyMaterialAvailableException();
continue;
}
if (!_subscriptionMap.containsKey(jid)) {
unawaited(subscribeToDeviceListNodeImpl(jid));
_subscriptionMap[jid] = true;
}
for (final deviceId in devices) {
// Empty OMEMO messages are allowed to bypass trust
if (plaintext != null) {
// Only encrypt to devices that are trusted
if (!(await _trustManager.isTrusted(jid, deviceId))) continue;
// Only encrypt to devices that are enabled
if (!(await _trustManager.isEnabled(jid, deviceId))) continue;
}
final ratchetKey = RatchetMapKey(jid, deviceId);
var ratchet = _ratchetMap[ratchetKey];
if (ratchet == null) {
_log.severe('Ratchet ${ratchetKey.toJsonKey()} does not exist.');
deviceEncryptionErrors[ratchetKey] =
NoKeyMaterialAvailableException();
continue;
}
final ciphertext =
(await ratchet.ratchetEncrypt(keyPayload)).ciphertext;
if (kex.containsKey(ratchetKey)) {
// The ratchet did not exist
final k = kex[ratchetKey]!
..message = OmemoAuthenticatedMessage.fromBuffer(ciphertext);
final buffer = base64.encode(k.writeToBuffer());
encryptedKeys.add(
EncryptedKey(
jid,
deviceId,
buffer,
true,
),
);
ratchet = ratchet.cloneWithKex(buffer);
_ratchetMap[ratchetKey] = ratchet;
} else if (!ratchet.acknowledged) {
// The ratchet exists but is not acked
if (ratchet.kex != null) {
final oldKex =
OmemoKeyExchange.fromBuffer(base64.decode(ratchet.kex!))
..message = OmemoAuthenticatedMessage.fromBuffer(ciphertext);
encryptedKeys.add(
EncryptedKey(
jid,
deviceId,
base64.encode(oldKex.writeToBuffer()),
true,
),
);
} else {
// The ratchet is not acked but we don't have the old key exchange
_log.warning(
'Ratchet for $jid:$deviceId is not acked but the kex attribute is null',
);
encryptedKeys.add(
EncryptedKey(
jid,
deviceId,
base64.encode(ciphertext),
false,
),
);
}
} else {
// The ratchet exists and is acked
encryptedKeys.add(
EncryptedKey(
jid,
deviceId,
base64.encode(ciphertext),
false,
),
);
}
// Commit the ratchet
_eventStreamController
.add(RatchetModifiedEvent(jid, deviceId, ratchet, false, false));
}
}
return EncryptionResult(
plaintext != null ? ciphertext : null,
encryptedKeys,
deviceEncryptionErrors,
jidEncryptionErrors,
);
}
/// Call when receiving an OMEMO:2 encrypted stanza. Will handle everything and
/// decrypt it.
Future<DecryptionResult> onIncomingStanza(OmemoIncomingStanza stanza) async {
await _enterRatchetCriticalSection(stanza.bareSenderJid);
if (!_subscriptionMap.containsKey(stanza.bareSenderJid)) {
unawaited(subscribeToDeviceListNodeImpl(stanza.bareSenderJid));
_subscriptionMap[stanza.bareSenderJid] = true;
}
final ratchetKey =
RatchetMapKey(stanza.bareSenderJid, stanza.senderDeviceId);
final _InternalDecryptionResult result;
try {
result = await _decryptMessage(
stanza.payload != null ? base64.decode(stanza.payload!) : null,
stanza.bareSenderJid,
stanza.senderDeviceId,
stanza.keys,
stanza.timestamp,
);
} on OmemoException catch (ex) {
await _leaveRatchetCriticalSection(stanza.bareSenderJid);
return DecryptionResult(
null,
ex,
);
}
// Check if the ratchet is acked
final ratchet = getRatchet(ratchetKey);
assert(
ratchet != null,
'We decrypted the message, so the ratchet must exist',
);
if (ratchet!.acknowledged) {
// Ratchet is acknowledged
if (ratchet.nr > 53 || result.ratchetCreated || result.ratchetReplaced) {
await sendEmptyOmemoMessageImpl(
await _encryptToJids(
[stanza.bareSenderJid],
null,
),
stanza.bareSenderJid,
);
}
// Ratchet is acked
await _leaveRatchetCriticalSection(stanza.bareSenderJid);
return DecryptionResult(
result.payload,
null,
);
} else {
// Ratchet is not acked.
// Mark as acked and send an empty OMEMO message.
await ratchetAcknowledged(
stanza.bareSenderJid,
stanza.senderDeviceId,
enterCriticalSection: false,
);
await sendEmptyOmemoMessageImpl(
await _encryptToJids(
[stanza.bareSenderJid],
null,
),
stanza.bareSenderJid,
);
await _leaveRatchetCriticalSection(stanza.bareSenderJid);
return DecryptionResult(
result.payload,
null,
);
}
}
/// Call when sending out an encrypted stanza. Will handle everything and
/// encrypt it.
Future<EncryptionResult> onOutgoingStanza(OmemoOutgoingStanza stanza) async {
_log.finest('Waiting to enter critical section');
await _enterRatchetCriticalSection(stanza.recipientJids.first);
_log.finest('Entered critical section');
final result = _encryptToJids(
stanza.recipientJids,
stanza.payload,
);
await _leaveRatchetCriticalSection(stanza.recipientJids.first);
return result;
}
// Sends a hearbeat message as specified by XEP-0384 to [jid].
Future<void> sendOmemoHeartbeat(String jid) async {
// TODO(Unknown): Include some error handling
final result = await _encryptToJids(
[jid],
null,
);
await sendEmptyOmemoMessageImpl(result, jid);
}
/// Mark the ratchet for device [deviceId] from [jid] as acked.
Future<void> ratchetAcknowledged(
String jid,
int deviceId, {
bool enterCriticalSection = true,
}) async {
if (enterCriticalSection) await _enterRatchetCriticalSection(jid);
final key = RatchetMapKey(jid, deviceId);
if (_ratchetMap.containsKey(key)) {
final ratchet = _ratchetMap[key]!..acknowledged = true;
// Commit it
_eventStreamController
.add(RatchetModifiedEvent(jid, deviceId, ratchet, false, false));
} else {
_log.severe(
'Attempted to acknowledge ratchet ${key.toJsonKey()}, even though it does not exist',
);
}
if (enterCriticalSection) await _leaveRatchetCriticalSection(jid);
}
/// Generates an entirely new device. May be useful when the user wants to reset their cryptographic
/// identity. Triggers an event to commit it to storage.
Future<void> regenerateDevice() async {
await _deviceLock.synchronized(() async {
_device = await OmemoDevice.generateNewDevice(_device.jid);
// Commit it
_eventStreamController.add(DeviceModifiedEvent(_device));
});
}
/// Returns the device used for encryption and decryption.
Future<OmemoDevice> getDevice() => _deviceLock.synchronized(() => _device);
/// Returns the id of the device used for encryption and decryption.
Future<int> getDeviceId() async => (await getDevice()).id;
/// Directly aquire the current device as a OMEMO device bundle.
Future<OmemoBundle> getDeviceBundle() async => (await getDevice()).toBundle();
/// Directly aquire the current device's fingerprint.
Future<String> getDeviceFingerprint() async =>
(await getDevice()).getFingerprint();
/// Returns the fingerprints for all devices of [jid] that we have a session with.
/// If there are not sessions with [jid], then returns null.
Future<List<DeviceFingerprint>?> getFingerprintsForJid(String jid) async {
if (!_deviceList.containsKey(jid)) return null;
await _enterRatchetCriticalSection(jid);
final fingerprintKeys = _deviceList[jid]!
.map((id) => RatchetMapKey(jid, id))
.where((key) => _ratchetMap.containsKey(key));
final fingerprints = List<DeviceFingerprint>.empty(growable: true);
for (final key in fingerprintKeys) {
final curveKey = await _ratchetMap[key]!.ik.toCurve25519();
fingerprints.add(
DeviceFingerprint(
key.deviceId,
HEX.encode(await curveKey.getBytes()),
),
);
}
await _leaveRatchetCriticalSection(jid);
return fingerprints;
}
/// Ensures that the device list is fetched again on the next message sending.
void onNewConnection() {
_deviceListRequested.clear();
_subscriptionMap.clear();
}
/// Sets the device list for [jid] to [devices]. Triggers a DeviceListModifiedEvent.
void onDeviceListUpdate(String jid, List<int> devices) {
_deviceList[jid] = devices;
_deviceListRequested[jid] = true;
// Trigger an event
_eventStreamController.add(DeviceListModifiedEvent(_deviceList));
}
void initialize(
Map<RatchetMapKey, OmemoDoubleRatchet> ratchetMap,
Map<String, List<int>> deviceList,
) {
_deviceList = deviceList;
_ratchetMap = ratchetMap;
}
/// Removes all ratchets for JID [jid]. This also removes all trust decisions for
/// [jid] from the trust manager. This function triggers a RatchetRemovedEvent for
/// every removed ratchet and a DeviceListModifiedEvent afterwards. Behaviour for
/// the trust manager is dependent on its implementation.
Future<void> removeAllRatchets(String jid) async {
await _enterRatchetCriticalSection(jid);
for (final deviceId in _deviceList[jid]!) {
// Remove the ratchet and commit it
_ratchetMap.remove(RatchetMapKey(jid, deviceId));
_eventStreamController.add(RatchetRemovedEvent(jid, deviceId));
}
// Remove the devices from the device list cache and commit it
_deviceList.remove(jid);
_deviceListRequested.remove(jid);
_eventStreamController.add(DeviceListModifiedEvent(_deviceList));
// Remove trust decisions
await _trustManager.removeTrustDecisionsForJid(jid);
await _leaveRatchetCriticalSection(jid);
}
/// Replaces the internal device with [newDevice]. Does not trigger an event.
Future<void> replaceDevice(OmemoDevice newDevice) async {
await _deviceLock.synchronized(() {
_device = newDevice;
});
}
}

100
lib/src/omemo/queue.dart Normal file
View File

@ -0,0 +1,100 @@
import 'dart:async';
import 'dart:collection';
import 'package:meta/meta.dart';
import 'package:synchronized/synchronized.dart';
extension UtilAllMethodsList<T> on List<T> {
void removeAll(List<T> values) {
for (final value in values) {
remove(value);
}
}
bool containsAll(List<T> values) {
for (final value in values) {
if (!contains(value)) {
return false;
}
}
return true;
}
}
class _RatchetAccessQueueEntry {
_RatchetAccessQueueEntry(
this.jids,
this.completer,
);
final List<String> jids;
final Completer<void> completer;
}
class RatchetAccessQueue {
final Queue<_RatchetAccessQueueEntry> _queue = Queue();
@visibleForTesting
final List<String> runningOperations = List<String>.empty(growable: true);
final Lock lock = Lock();
bool canBypass(List<String> jids) {
for (final jid in jids) {
if (runningOperations.contains(jid)) {
return false;
}
}
return true;
}
Future<void> enterCriticalSection(List<String> jids) async {
final completer = await lock.synchronized<Completer<void>?>(() {
if (canBypass(jids)) {
runningOperations.addAll(jids);
return null;
}
final completer = Completer<void>();
_queue.add(
_RatchetAccessQueueEntry(
jids,
completer,
),
);
return completer;
});
await completer?.future;
}
Future<void> leaveCriticalSection(List<String> jids) async {
await lock.synchronized(() {
runningOperations.removeAll(jids);
while (_queue.isNotEmpty) {
if (canBypass(_queue.first.jids)) {
final head = _queue.removeFirst();
runningOperations.addAll(head.jids);
head.completer.complete();
} else {
break;
}
}
});
}
Future<T> synchronized<T>(
List<String> jids,
Future<T> Function() function,
) async {
await enterCriticalSection(jids);
final result = await function();
await leaveCriticalSection(jids);
return result;
}
}

View File

@ -0,0 +1,26 @@
import 'package:omemo_dart/src/double_ratchet/double_ratchet.dart';
class OmemoRatchetData {
const OmemoRatchetData(
this.jid,
this.id,
this.ratchet,
this.added,
this.replaced,
);
/// The JID we have the ratchet with.
final String jid;
/// The device id we have the ratchet with.
final int id;
/// The actual double ratchet to commit.
final OmemoDoubleRatchet ratchet;
/// Indicates whether the ratchet has just been created (true) or just modified (false).
final bool added;
/// Indicates whether the ratchet has been replaced (true) or not.
final bool replaced;
}

View File

@ -5,9 +5,9 @@ class OmemoIncomingStanza {
const OmemoIncomingStanza(
this.bareSenderJid,
this.senderDeviceId,
this.timestamp,
this.keys,
this.payload,
this.isCatchup,
);
/// The bare JID of the sender of the stanza.
@ -16,14 +16,14 @@ class OmemoIncomingStanza {
/// The device ID of the sender.
final int senderDeviceId;
/// The timestamp when the stanza was received.
final int timestamp;
/// The included encrypted keys
/// The included encrypted keys for our own JID
final List<EncryptedKey> keys;
/// The string payload included in the <encrypted /> element.
final String? payload;
/// Flag indicating whether the message was received due to a catchup.
final bool isCatchup;
}
/// Describes a stanza that is to be sent out
@ -37,5 +37,5 @@ class OmemoOutgoingStanza {
final List<String> recipientJids;
/// The serialised XML data that should be encrypted.
final String payload;
final String? payload;
}

View File

@ -1,38 +0,0 @@
import 'package:omemo_dart/src/helpers.dart';
import 'package:omemo_dart/src/protobuf/protobuf.dart';
class OmemoAuthenticatedMessage {
OmemoAuthenticatedMessage();
factory OmemoAuthenticatedMessage.fromBuffer(List<int> data) {
var i = 0;
// required bytes mac = 1;
if (data[0] != fieldId(1, fieldTypeByteArray)) {
throw Exception();
}
final mac = data.sublist(2, i + 2 + data[1]);
i += data[1] + 2;
if (data[i] != fieldId(2, fieldTypeByteArray)) {
throw Exception();
}
final message = data.sublist(i + 2, i + 2 + data[i + 1]);
return OmemoAuthenticatedMessage()
..mac = mac
..message = message;
}
List<int>? mac;
List<int>? message;
List<int> writeToBuffer() {
return concat([
[fieldId(1, fieldTypeByteArray), mac!.length],
mac!,
[fieldId(2, fieldTypeByteArray), message!.length],
message!,
]);
}
}

View File

@ -1,71 +0,0 @@
import 'package:omemo_dart/src/helpers.dart';
import 'package:omemo_dart/src/protobuf/omemo_authenticated_message.dart';
import 'package:omemo_dart/src/protobuf/protobuf.dart';
class OmemoKeyExchange {
OmemoKeyExchange();
factory OmemoKeyExchange.fromBuffer(List<int> data) {
var i = 0;
if (data[i] != fieldId(1, fieldTypeUint32)) {
throw Exception();
}
var decoded = decodeVarint(data, 1);
final pkId = decoded.n;
i += decoded.length + 1;
if (data[i] != fieldId(2, fieldTypeUint32)) {
throw Exception();
}
decoded = decodeVarint(data, i + 1);
final spkId = decoded.n;
i += decoded.length + 1;
if (data[i] != fieldId(3, fieldTypeByteArray)) {
throw Exception();
}
final ik = data.sublist(i + 2, i + 2 + data[i + 1]);
i += 2 + data[i + 1];
if (data[i] != fieldId(4, fieldTypeByteArray)) {
throw Exception();
}
final ek = data.sublist(i + 2, i + 2 + data[i + 1]);
i += 2 + data[i + 1];
if (data[i] != fieldId(5, fieldTypeByteArray)) {
throw Exception();
}
final message = OmemoAuthenticatedMessage.fromBuffer(data.sublist(i + 2));
return OmemoKeyExchange()
..pkId = pkId
..spkId = spkId
..ik = ik
..ek = ek
..message = message;
}
int? pkId;
int? spkId;
List<int>? ik;
List<int>? ek;
OmemoAuthenticatedMessage? message;
List<int> writeToBuffer() {
final msg = message!.writeToBuffer();
return concat([
[fieldId(1, fieldTypeUint32)],
encodeVarint(pkId!),
[fieldId(2, fieldTypeUint32)],
encodeVarint(spkId!),
[fieldId(3, fieldTypeByteArray), ik!.length],
ik!,
[fieldId(4, fieldTypeByteArray), ek!.length],
ek!,
[fieldId(5, fieldTypeByteArray), msg.length],
msg,
]);
}
}

View File

@ -1,75 +0,0 @@
import 'package:omemo_dart/src/helpers.dart';
import 'package:omemo_dart/src/protobuf/protobuf.dart';
class OmemoMessage {
OmemoMessage();
factory OmemoMessage.fromBuffer(List<int> data) {
var i = 0;
// required uint32 n = 1;
if (data[0] != fieldId(1, fieldTypeUint32)) {
throw Exception();
}
var decode = decodeVarint(data, 1);
final n = decode.n;
i += decode.length + 1;
// required uint32 pn = 2;
if (data[i] != fieldId(2, fieldTypeUint32)) {
throw Exception();
}
decode = decodeVarint(data, i + 1);
final pn = decode.n;
i += decode.length + 1;
// required bytes dh_pub = 3;
if (data[i] != fieldId(3, fieldTypeByteArray)) {
throw Exception();
}
final dhPub = data.sublist(i + 2, i + 2 + data[i + 1]);
i += 2 + data[i + 1];
// optional bytes ciphertext = 4;
List<int>? ciphertext;
if (i < data.length) {
if (data[i] != fieldId(4, fieldTypeByteArray)) {
throw Exception();
}
ciphertext = data.sublist(i + 2, i + 2 + data[i + 1]);
}
return OmemoMessage()
..n = n
..pn = pn
..dhPub = dhPub
..ciphertext = ciphertext;
}
int? n;
int? pn;
List<int>? dhPub;
List<int>? ciphertext;
List<int> writeToBuffer() {
final data = concat([
[fieldId(1, fieldTypeUint32)],
encodeVarint(n!),
[fieldId(2, fieldTypeUint32)],
encodeVarint(pn!),
[fieldId(3, fieldTypeByteArray), dhPub!.length],
dhPub!,
]);
if (ciphertext != null) {
return concat([
data,
[fieldId(4, fieldTypeByteArray), ciphertext!.length],
ciphertext!,
]);
}
return data;
}
}

View File

@ -1,64 +0,0 @@
/// Masks the 7 LSB
const lsb7Mask = 0x7F;
/// Constant for setting the MSB
const msb = 1 << 7;
/// Field types
const fieldTypeUint32 = 0;
const fieldTypeByteArray = 2;
int fieldId(int number, int type) {
return (number << 3) | type;
}
class VarintDecode {
const VarintDecode(this.n, this.length);
final int n;
final int length;
}
/// Decode a Varint that begins at [input]'s index [offset].
VarintDecode decodeVarint(List<int> input, int offset) {
// The return value
var n = 0;
// The byte offset counter
var i = 0;
// Iterate until the MSB of the byte is 0
while (true) {
// Mask only the 7 LSB and "move" them accordingly
n += (input[offset + i] & lsb7Mask) << (7 * i);
// Break if we reached the end
if (input[offset + i] & 1 << 7 == 0) {
break;
}
i++;
}
return VarintDecode(n, i + 1);
}
// Encodes the integer [i] into a Varint.
List<int> encodeVarint(int i) {
assert(i >= 0, "Two's complement is not implemented");
final ret = List<int>.empty(growable: true);
// Thanks to https://github.com/hathibelagal-dev/LEB128 for the trick with toRadixString!
final numSevenBlocks = (i.toRadixString(2).length / 7).ceil();
for (var j = 0; j < numSevenBlocks; j++) {
// The 7 LSB of the byte we're creating
final x = (i & (lsb7Mask << j * 7)) >> j * 7;
if (j == numSevenBlocks - 1) {
// If we were to shift further, we only get zero, so we're at the end
ret.add(x);
} else {
// We still have at least one bit more to go, so set the MSB to 1
ret.add(x + msb);
}
}
return ret;
}

View File

@ -22,5 +22,5 @@ class AlwaysTrustingTrustManager extends TrustManager {
Future<void> removeTrustDecisionsForJid(String jid) async {}
@override
Future<Map<String, dynamic>> toJson() async => <String, dynamic>{};
Future<void> loadTrustData(String jid) async {}
}

View File

@ -1,3 +1,5 @@
import 'package:meta/meta.dart';
/// The base class for managing trust in OMEMO sessions.
// ignore: one_member_abstracts
abstract class TrustManager {
@ -7,6 +9,7 @@ abstract class TrustManager {
/// Called by the OmemoSessionManager when a new session has been built. Should set
/// a default trust state to [jid]'s device with identifier [deviceId].
@internal
Future<void> onNewSession(String jid, int deviceId);
/// Return true if the device with id [deviceId] of Jid [jid] should be used for encryption.
@ -17,9 +20,14 @@ abstract class TrustManager {
/// if [enabled] is false.
Future<void> setEnabled(String jid, int deviceId, bool enabled);
/// Serialize the trust manager to JSON.
Future<Map<String, dynamic>> toJson();
/// Removes all trust decisions for [jid].
@internal
Future<void> removeTrustDecisionsForJid(String jid);
// ignore: comment_references
/// Called from within the [OmemoManager].
/// Loads the trust data for the JID [jid] from persistent storage
/// into the internal cache, if applicable.
@internal
Future<void> loadTrustData(String jid);
}

View File

@ -1,71 +1,116 @@
import 'package:meta/meta.dart';
import 'package:omemo_dart/src/helpers.dart';
import 'package:omemo_dart/src/omemo/ratchet_map_key.dart';
import 'package:omemo_dart/src/trust/base.dart';
import 'package:synchronized/synchronized.dart';
@immutable
class BTBVTrustData {
const BTBVTrustData(
this.jid,
this.device,
this.state,
this.enabled,
this.trusted,
);
/// The JID in question.
final String jid;
/// The device (ratchet) in question.
final int device;
/// The trust state of the ratchet.
final BTBVTrustState state;
/// Flag indicating whether the ratchet is enabled (true) or not (false).
final bool enabled;
/// Flag indicating whether the ratchet is trusted. For loading and commiting a ratchet, this field
/// contains an arbitrary value.
/// When using [BlindTrustBeforeVerificationTrustManager.getDevicesTrust], this flag will be true if
/// the ratchet is trusted and false if not.
final bool trusted;
}
/// A callback for when a trust decision is to be commited to persistent storage.
typedef BTBVTrustCommitCallback = Future<void> Function(BTBVTrustData data);
/// A stub-implementation of [BTBVTrustCommitCallback].
Future<void> btbvCommitStub(BTBVTrustData _) async {}
/// A callback for when all trust decisions for a JID should be removed from persistent storage.
typedef BTBVRemoveTrustForJidCallback = Future<void> Function(String jid);
/// A stub-implementation of [BTBVRemoveTrustForJidCallback].
Future<void> btbvRemoveTrustStub(String _) async {}
/// A callback for when trust data should be loaded.
typedef BTBVLoadDataCallback = Future<List<BTBVTrustData>> Function(String jid);
/// A stub-implementation for [BTBVLoadDataCallback].
Future<List<BTBVTrustData>> btbvLoadDataStub(String _) async => [];
/// Every device is in either of those two trust states:
/// - notTrusted: The device is absolutely not trusted
/// - blindTrust: The fingerprint is not verified using OOB means
/// - verified: The fingerprint has been verified using OOB means
enum BTBVTrustState {
notTrusted, // = 1
blindTrust, // = 2
verified, // = 3
}
notTrusted(1),
blindTrust(2),
verified(3);
int _trustToInt(BTBVTrustState state) {
switch (state) {
case BTBVTrustState.notTrusted:
return 1;
case BTBVTrustState.blindTrust:
return 2;
case BTBVTrustState.verified:
return 3;
}
}
const BTBVTrustState(this.value);
BTBVTrustState _trustFromInt(int i) {
switch (i) {
factory BTBVTrustState.fromInt(int value) {
switch (value) {
case 1:
return BTBVTrustState.notTrusted;
case 2:
return BTBVTrustState.blindTrust;
case 3:
return BTBVTrustState.verified;
// TODO(Unknown): Should we handle this better?
default:
return BTBVTrustState.notTrusted;
}
}
/// The value backing the trust state.
final int value;
}
/// A TrustManager that implements the idea of Blind Trust Before Verification.
/// See https://gultsch.de/trust.html for more details.
abstract class BlindTrustBeforeVerificationTrustManager extends TrustManager {
class BlindTrustBeforeVerificationTrustManager extends TrustManager {
BlindTrustBeforeVerificationTrustManager({
Map<RatchetMapKey, BTBVTrustState>? trustCache,
Map<RatchetMapKey, bool>? enablementCache,
Map<String, List<int>>? devices,
}) : trustCache = trustCache ?? {},
enablementCache = enablementCache ?? {},
devices = devices ?? {},
_lock = Lock();
this.loadData = btbvLoadDataStub,
this.commit = btbvCommitStub,
this.removeTrust = btbvRemoveTrustStub,
});
/// The cache for mapping a RatchetMapKey to its trust state
@visibleForTesting
@protected
final Map<RatchetMapKey, BTBVTrustState> trustCache;
final Map<RatchetMapKey, BTBVTrustState> trustCache = {};
/// The cache for mapping a RatchetMapKey to whether it is enabled or not
@visibleForTesting
@protected
final Map<RatchetMapKey, bool> enablementCache;
final Map<RatchetMapKey, bool> enablementCache = {};
/// Mapping of Jids to their device identifiers
@visibleForTesting
@protected
final Map<String, List<int>> devices;
final Map<String, List<int>> devices = {};
/// The lock for devices and trustCache
final Lock _lock;
/// Callback for loading trust data.
final BTBVLoadDataCallback loadData;
/// Callback for commiting trust data to persistent storage.
final BTBVTrustCommitCallback commit;
/// Callback for removing trust data for a JID.
final BTBVRemoveTrustForJidCallback removeTrust;
/// Returns true if [jid] has at least one device that is verified. If not, returns false.
/// Note that this function accesses devices and trustCache, which requires that the
@ -80,35 +125,25 @@ abstract class BlindTrustBeforeVerificationTrustManager extends TrustManager {
@override
Future<bool> isTrusted(String jid, int deviceId) async {
var returnValue = false;
await _lock.synchronized(() async {
final trustCacheValue = trustCache[RatchetMapKey(jid, deviceId)];
if (trustCacheValue == BTBVTrustState.notTrusted) {
returnValue = false;
return;
return false;
} else if (trustCacheValue == BTBVTrustState.verified) {
// The key is verified, so it's safe.
returnValue = true;
return;
return true;
} else {
if (_hasAtLeastOneVerifiedDevice(jid)) {
// Do not trust if there is at least one device with full trust
returnValue = false;
return;
return false;
} else {
// We have not verified a key from [jid], so it is blind trust all the way.
returnValue = true;
return;
return true;
}
}
});
return returnValue;
}
@override
Future<void> onNewSession(String jid, int deviceId) async {
await _lock.synchronized(() async {
final key = RatchetMapKey(jid, deviceId);
if (_hasAtLeastOneVerifiedDevice(jid)) {
trustCache[key] = BTBVTrustState.notTrusted;
@ -118,31 +153,44 @@ abstract class BlindTrustBeforeVerificationTrustManager extends TrustManager {
enablementCache[key] = true;
}
if (devices.containsKey(jid)) {
devices[jid]!.add(deviceId);
} else {
devices[jid] = List<int>.from([deviceId]);
}
// Append to the device list
devices.appendOrCreate(jid, deviceId, checkExistence: true);
// Commit the state
await commitState();
});
await commit(
BTBVTrustData(
jid,
deviceId,
trustCache[key]!,
enablementCache[key]!,
false,
),
);
}
/// Returns a mapping from the device identifiers of [jid] to their trust state. If
/// there are no devices known for [jid], then an empty map is returned.
Future<Map<int, BTBVTrustState>> getDevicesTrust(String jid) async {
return _lock.synchronized(() async {
final map = <int, BTBVTrustState>{};
Future<Map<int, BTBVTrustData>> getDevicesTrust(String jid) async {
final map = <int, BTBVTrustData>{};
if (!devices.containsKey(jid)) return map;
for (final deviceId in devices[jid]!) {
map[deviceId] = trustCache[RatchetMapKey(jid, deviceId)]!;
final key = RatchetMapKey(jid, deviceId);
if (!trustCache.containsKey(key) || !enablementCache.containsKey(key)) {
continue;
}
map[deviceId] = BTBVTrustData(
jid,
deviceId,
trustCache[key]!,
enablementCache[key]!,
await isTrusted(jid, deviceId),
);
}
return map;
});
}
/// Sets the trust of [jid]'s device with identifier [deviceId] to [state].
@ -151,108 +199,71 @@ abstract class BlindTrustBeforeVerificationTrustManager extends TrustManager {
int deviceId,
BTBVTrustState state,
) async {
await _lock.synchronized(() async {
trustCache[RatchetMapKey(jid, deviceId)] = state;
final key = RatchetMapKey(jid, deviceId);
trustCache[key] = state;
// Commit the state
await commitState();
});
await commit(
BTBVTrustData(
jid,
deviceId,
state,
enablementCache[key]!,
false,
),
);
}
@override
Future<bool> isEnabled(String jid, int deviceId) async {
return _lock.synchronized(() async {
final value = enablementCache[RatchetMapKey(jid, deviceId)];
if (value == null) return false;
return value;
});
}
@override
Future<void> setEnabled(String jid, int deviceId, bool enabled) async {
await _lock.synchronized(() async {
enablementCache[RatchetMapKey(jid, deviceId)] = enabled;
});
final key = RatchetMapKey(jid, deviceId);
enablementCache[key] = enabled;
// Commit the state
await commitState();
}
@override
Future<Map<String, dynamic>> toJson() async {
return {
'devices': devices,
'trust': trustCache.map(
(key, value) => MapEntry(
key.toJsonKey(),
_trustToInt(value),
),
),
'enable':
enablementCache.map((key, value) => MapEntry(key.toJsonKey(), value)),
};
}
/// From a serialized version of a BTBV trust manager, extract the device list.
/// NOTE: This is needed as Dart cannot just cast a List<dynamic> to List<int> and so on.
static Map<String, List<int>> deviceListFromJson(Map<String, dynamic> json) {
return (json['devices']! as Map<String, dynamic>).map<String, List<int>>(
(key, value) => MapEntry(
key,
(value as List<dynamic>).map<int>((i) => i as int).toList(),
),
);
}
/// From a serialized version of a BTBV trust manager, extract the trust cache.
/// NOTE: This is needed as Dart cannot just cast a List<dynamic> to List<int> and so on.
static Map<RatchetMapKey, BTBVTrustState> trustCacheFromJson(
Map<String, dynamic> json,
) {
return (json['trust']! as Map<String, dynamic>)
.map<RatchetMapKey, BTBVTrustState>(
(key, value) => MapEntry(
RatchetMapKey.fromJsonKey(key),
_trustFromInt(value as int),
),
);
}
/// From a serialized version of a BTBV trust manager, extract the enable cache.
/// NOTE: This is needed as Dart cannot just cast a List<dynamic> to List<int> and so on.
static Map<RatchetMapKey, bool> enableCacheFromJson(
Map<String, dynamic> json,
) {
return (json['enable']! as Map<String, dynamic>).map<RatchetMapKey, bool>(
(key, value) => MapEntry(
RatchetMapKey.fromJsonKey(key),
value as bool,
await commit(
BTBVTrustData(
jid,
deviceId,
trustCache[key]!,
enabled,
false,
),
);
}
@override
Future<void> removeTrustDecisionsForJid(String jid) async {
await _lock.synchronized(() async {
// Clear the caches
for (final device in devices[jid]!) {
final key = RatchetMapKey(jid, device);
trustCache.remove(key);
enablementCache.remove(key);
}
devices.remove(jid);
await commitState();
});
// Commit the state
await removeTrust(jid);
}
/// Called when the state of the trust manager has been changed. Allows the user to
/// commit the trust state to persistent storage.
@visibleForOverriding
Future<void> commitState();
@override
Future<void> loadTrustData(String jid) async {
for (final result in await loadData(jid)) {
final key = RatchetMapKey(jid, result.device);
trustCache[key] = result.state;
enablementCache[key] = result.enabled;
devices.appendOrCreate(jid, result.device, checkExistence: true);
}
}
@visibleForTesting
BTBVTrustState getDeviceTrust(String jid, int deviceId) =>
trustCache[RatchetMapKey(jid, deviceId)]!;
}
/// A BTBV TrustManager that does not commit its state to persistent storage. Well suited
/// for testing.
class MemoryBTBVTrustManager extends BlindTrustBeforeVerificationTrustManager {
@override
Future<void> commitState() async {}
}

View File

@ -22,5 +22,5 @@ class NeverTrustingTrustManager extends TrustManager {
Future<void> removeTrustDecisionsForJid(String jid) async {}
@override
Future<Map<String, dynamic>> toJson() async => <String, dynamic>{};
Future<void> loadTrustData(String jid) async {}
}

View File

@ -1,15 +1,14 @@
import 'dart:convert';
import 'dart:math';
import 'package:cryptography/cryptography.dart';
import 'package:moxlib/moxlib.dart';
import 'package:omemo_dart/src/common/constants.dart';
import 'package:omemo_dart/src/crypto.dart';
import 'package:omemo_dart/src/errors.dart';
import 'package:omemo_dart/src/helpers.dart';
import 'package:omemo_dart/src/keys.dart';
import 'package:omemo_dart/src/omemo/bundle.dart';
/// The overarching assumption is that we use Ed25519 keys for the identity keys
const omemoX3DHInfoString = 'OMEMO X3DH';
/// Performed by Alice
class X3DHAliceResult {
const X3DHAliceResult(this.ek, this.sk, this.opkId, this.ad);
@ -70,7 +69,8 @@ Future<List<int>> kdf(List<int> km) async {
/// Alice builds a session with Bob using his bundle [bundle] and Alice's identity key
/// pair [ik].
Future<X3DHAliceResult> x3dhFromBundle(
Future<Result<InvalidKeyExchangeSignatureError, X3DHAliceResult>>
x3dhFromBundle(
OmemoBundle bundle,
OmemoKeyPair ik,
) async {
@ -84,7 +84,7 @@ Future<X3DHAliceResult> x3dhFromBundle(
);
if (!signatureValue) {
throw InvalidSignatureException();
return Result(InvalidKeyExchangeSignatureError());
}
// Generate EK
@ -106,7 +106,7 @@ Future<X3DHAliceResult> x3dhFromBundle(
await bundle.ik.getBytes(),
]);
return X3DHAliceResult(ek, sk, opkId, ad);
return Result(X3DHAliceResult(ek, sk, opkId, ad));
}
/// Bob builds the X3DH shared secret from the inital message [msg], the SPK [spk], the

View File

@ -1,6 +1,6 @@
name: omemo_dart
description: An XMPP library independent OMEMO library
version: 0.4.3
version: 0.5.0
homepage: https://github.com/PapaTutuWawa/omemo_dart
publish_to: https://git.polynom.me/api/packages/PapaTutuWawa/pub
@ -13,12 +13,15 @@ dependencies:
hex: ^0.2.0
logging: ^1.0.2
meta: ^1.7.0
moxlib:
version: ^0.2.0
hosted: https://git.polynom.me/api/packages/Moxxy/pub
pinenacl: ^0.5.1
protobuf: ^2.1.0
protoc_plugin: ^20.0.1
synchronized: ^3.0.0+2
dev_dependencies:
lints: ^2.0.0
protobuf: ^2.1.0
protoc_plugin: ^20.0.1
test: ^1.21.0
very_good_analysis: ^3.0.1

View File

@ -1,39 +1,10 @@
// ignore_for_file: avoid_print
import 'dart:convert';
import 'dart:developer';
import 'package:cryptography/cryptography.dart';
import 'package:omemo_dart/omemo_dart.dart';
import 'package:omemo_dart/protobuf/schema.pb.dart';
import 'package:omemo_dart/src/double_ratchet/crypto.dart';
import 'package:test/test.dart';
void main() {
test('Test encrypting and decrypting', () async {
final sessionAd = List<int>.filled(32, 0x0);
final mk = List<int>.filled(32, 0x1);
final plaintext = utf8.encode('Hallo');
final header = OMEMOMessage()
..n = 0
..pn = 0
..dhPub = List<int>.empty();
final asd = concat([sessionAd, header.writeToBuffer()]);
final ciphertext = await encrypt(
mk,
plaintext,
asd,
sessionAd,
);
final decrypted = await decrypt(
mk,
ciphertext,
asd,
sessionAd,
);
expect(decrypted, plaintext);
});
test('Test the Double Ratchet', () async {
// Generate keys
const bobJid = 'bob@other.example.server';
@ -57,7 +28,8 @@ void main() {
);
// Alice does X3DH
final resultAlice = await x3dhFromBundle(bundleBob, ikAlice);
final resultAliceRaw = await x3dhFromBundle(bundleBob, ikAlice);
final resultAlice = resultAliceRaw.get<X3DHAliceResult>();
// Alice sends the inital message to Bob
// ...
@ -74,23 +46,28 @@ void main() {
ikBob,
);
print('X3DH key exchange done');
log('X3DH key exchange done');
// Alice and Bob now share sk as a common secret and ad
// Build a session
final alicesRatchet = await OmemoDoubleRatchet.initiateNewSession(
spkBob.pk,
bundleBob.spkId,
ikBob.pk,
ikAlice.pk,
resultAlice.ek.pk,
resultAlice.sk,
resultAlice.ad,
0,
resultAlice.opkId,
);
final bobsRatchet = await OmemoDoubleRatchet.acceptNewSession(
spkBob,
bundleBob.spkId,
ikAlice.pk,
2,
resultAlice.ek.pk,
resultBob.sk,
resultBob.ad,
0,
);
expect(alicesRatchet.sessionAd, bobsRatchet.sessionAd);
@ -98,40 +75,42 @@ void main() {
for (var i = 0; i < 100; i++) {
final messageText = 'Hello, dear $i';
log('${i + 1}/100');
if (i.isEven) {
// Alice encrypts a message
final aliceRatchetResult =
await alicesRatchet.ratchetEncrypt(utf8.encode(messageText));
print('Alice sent the message');
log('Alice sent the message');
// Alice sends it to Bob
// ...
// Bob tries to decrypt it
final bobRatchetResult = await bobsRatchet.ratchetDecrypt(
aliceRatchetResult.header,
aliceRatchetResult.ciphertext,
aliceRatchetResult,
);
print('Bob decrypted the message');
log('Bob decrypted the message');
expect(utf8.encode(messageText), bobRatchetResult);
expect(bobRatchetResult.isType<List<int>>(), true);
expect(bobRatchetResult.get<List<int>>(), utf8.encode(messageText));
} else {
// Bob sends a message to Alice
final bobRatchetResult =
await bobsRatchet.ratchetEncrypt(utf8.encode(messageText));
print('Bob sent the message');
log('Bob sent the message');
// Bobs sends it to Alice
// ...
// Alice tries to decrypt it
final aliceRatchetResult = await alicesRatchet.ratchetDecrypt(
bobRatchetResult.header,
bobRatchetResult.ciphertext,
bobRatchetResult,
);
print('Alice decrypted the message');
log('Alice decrypted the message');
expect(utf8.encode(messageText), aliceRatchetResult);
expect(aliceRatchetResult.isType<List<int>>(), true);
expect(aliceRatchetResult.get<List<int>>(), utf8.encode(messageText));
expect(utf8.encode(messageText), aliceRatchetResult.get<List<int>>());
}
}
});

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,186 +0,0 @@
import 'package:omemo_dart/protobuf/schema.pb.dart';
import 'package:omemo_dart/src/protobuf/omemo_authenticated_message.dart';
import 'package:omemo_dart/src/protobuf/omemo_key_exchange.dart';
import 'package:omemo_dart/src/protobuf/omemo_message.dart';
import 'package:omemo_dart/src/protobuf/protobuf.dart';
import 'package:test/test.dart';
void main() {
group('Base 128 Varints', () {
test('Test simple parsing of Varints', () {
expect(
decodeVarint(<int>[1], 0).n,
1,
);
expect(
decodeVarint(<int>[1], 0).length,
1,
);
expect(
decodeVarint(<int>[0x96, 0x01, 0x00], 0).n,
150,
);
expect(
decodeVarint(<int>[0x96, 0x01, 0x00], 0).length,
2,
);
expect(
decodeVarint(<int>[172, 2, 0x8], 0).n,
300,
);
expect(
decodeVarint(<int>[172, 2, 0x8], 0).length,
2,
);
});
test('Test encoding Varints', () {
expect(
encodeVarint(1),
<int>[1],
);
expect(
encodeVarint(150),
<int>[0x96, 0x01],
);
expect(
encodeVarint(300),
<int>[172, 2],
);
});
test('Test some special cases', () {
expect(decodeVarint(encodeVarint(1042464893), 0).n, 1042464893);
});
});
group('OMEMOMessage', () {
test('Decode a OMEMOMessage', () {
final pbMessage = OMEMOMessage()
..n = 1
..pn = 5
..dhPub = <int>[1, 2, 3]
..ciphertext = <int>[4, 5, 6];
final serial = pbMessage.writeToBuffer();
final msg = OmemoMessage.fromBuffer(serial);
expect(msg.n, 1);
expect(msg.pn, 5);
expect(msg.dhPub, <int>[1, 2, 3]);
expect(msg.ciphertext, <int>[4, 5, 6]);
});
test('Decode a OMEMOMessage without ciphertext', () {
final pbMessage = OMEMOMessage()
..n = 1
..pn = 5
..dhPub = <int>[1, 2, 3];
final serial = pbMessage.writeToBuffer();
final msg = OmemoMessage.fromBuffer(serial);
expect(msg.n, 1);
expect(msg.pn, 5);
expect(msg.dhPub, <int>[1, 2, 3]);
expect(msg.ciphertext, null);
});
test('Encode a OMEMOMessage', () {
final m = OmemoMessage()
..n = 1
..pn = 5
..dhPub = <int>[1, 2, 3]
..ciphertext = <int>[4, 5, 6];
final serial = m.writeToBuffer();
final msg = OMEMOMessage.fromBuffer(serial);
expect(msg.n, 1);
expect(msg.pn, 5);
expect(msg.dhPub, <int>[1, 2, 3]);
expect(msg.ciphertext, <int>[4, 5, 6]);
});
test('Encode a OMEMOMessage without ciphertext', () {
final m = OmemoMessage()
..n = 1
..pn = 5
..dhPub = <int>[1, 2, 3];
final serial = m.writeToBuffer();
final msg = OMEMOMessage.fromBuffer(serial);
expect(msg.n, 1);
expect(msg.pn, 5);
expect(msg.dhPub, <int>[1, 2, 3]);
expect(msg.ciphertext, <int>[]);
});
});
group('OMEMOAuthenticatedMessage', () {
test('Test encoding a message', () {
final msg = OmemoAuthenticatedMessage()
..mac = <int>[1, 2, 3]
..message = <int>[4, 5, 6];
final decoded = OMEMOAuthenticatedMessage.fromBuffer(msg.writeToBuffer());
expect(decoded.mac, <int>[1, 2, 3]);
expect(decoded.message, <int>[4, 5, 6]);
});
test('Test decoding a message', () {
final msg = OMEMOAuthenticatedMessage()
..mac = <int>[1, 2, 3]
..message = <int>[4, 5, 6];
final bytes = msg.writeToBuffer();
final decoded = OmemoAuthenticatedMessage.fromBuffer(bytes);
expect(decoded.mac, <int>[1, 2, 3]);
expect(decoded.message, <int>[4, 5, 6]);
});
});
group('OMEMOKeyExchange', () {
test('Test encoding a message', () {
final authMessage = OmemoAuthenticatedMessage()
..mac = <int>[5, 6, 8, 0]
..message = <int>[4, 5, 7, 3, 2];
final message = OmemoKeyExchange()
..pkId = 698
..spkId = 245
..ik = <int>[1, 4, 6]
..ek = <int>[4, 6, 7, 80]
..message = authMessage;
final kex = OMEMOKeyExchange.fromBuffer(message.writeToBuffer());
expect(kex.pkId, 698);
expect(kex.spkId, 245);
expect(kex.ik, <int>[1, 4, 6]);
expect(kex.ek, <int>[4, 6, 7, 80]);
expect(kex.message.mac, <int>[5, 6, 8, 0]);
expect(kex.message.message, <int>[4, 5, 7, 3, 2]);
});
test('Test decoding a message', () {
final message = OMEMOAuthenticatedMessage()
..mac = <int>[5, 6, 8, 0]
..message = <int>[4, 5, 7, 3, 2];
final kex = OMEMOKeyExchange()
..pkId = 698
..spkId = 245
..ik = <int>[1, 4, 6]
..ek = <int>[4, 6, 7, 80]
..message = message;
final decoded = OmemoKeyExchange.fromBuffer(kex.writeToBuffer());
expect(decoded.pkId, 698);
expect(decoded.spkId, 245);
expect(decoded.ik, <int>[1, 4, 6]);
expect(decoded.ek, <int>[4, 6, 7, 80]);
expect(decoded.message!.mac, <int>[5, 6, 8, 0]);
expect(decoded.message!.message, <int>[4, 5, 7, 3, 2]);
});
test('Test decoding an issue', () {
/*
final data = 'CAAQfRogc2GwslU219dUkrMHNM4KdZRmuFnBTae+bQaJ+55IsAMiII7aZKj2sUpb6xR/3Ari7WZUmKFV0G6czUc4NMvjKDBaKnwKEM2ZpI8X3TgcxhxwENANnlsSaAgAEAAaICy8T9WPgLb7RdYd8/4JkrLF0RahEkC3ZaEfk5jw3dsLIkBMILzLyByweLgF4lCn0oNea+kbdrFr6rY7r/7WyI8hXEQz38QpnN+jyGGwC7Ga0dq70WuyqE7VpiFArQwqZh2G';
final kex = OmemoKeyExchange.fromBuffer(base64Decode(data));
expect(kex.spkId!, 1042464893);
*/
});
});
}

62
test/queue_test.dart Normal file
View File

@ -0,0 +1,62 @@
import 'dart:async';
import 'package:omemo_dart/src/omemo/queue.dart';
import 'package:test/test.dart';
Future<void> testMethod(
RatchetAccessQueue queue,
List<String> data,
int duration,
) async {
await queue.enterCriticalSection(data);
await Future<void>.delayed(Duration(seconds: duration));
await queue.leaveCriticalSection(data);
}
void main() {
test('Test blocking due to conflicts', () async {
final queue = RatchetAccessQueue();
unawaited(testMethod(queue, ['a', 'b', 'c'], 5));
unawaited(testMethod(queue, ['a'], 4));
await Future<void>.delayed(const Duration(seconds: 1));
expect(
queue.runningOperations.containsAll(['a', 'b', 'c']),
isTrue,
);
expect(queue.runningOperations.length, 3);
await Future<void>.delayed(const Duration(seconds: 4));
expect(
queue.runningOperations.containsAll(['a']),
isTrue,
);
expect(queue.runningOperations.length, 1);
await Future<void>.delayed(const Duration(seconds: 4));
expect(queue.runningOperations.length, 0);
});
test('Test not blocking due to no conflicts', () async {
final queue = RatchetAccessQueue();
unawaited(testMethod(queue, ['a', 'b'], 5));
unawaited(testMethod(queue, ['c'], 5));
unawaited(testMethod(queue, ['d'], 5));
await Future<void>.delayed(const Duration(seconds: 1));
expect(queue.runningOperations.length, 4);
expect(
queue.runningOperations.containsAll([
'a',
'b',
'c',
'd',
]),
isTrue,
);
});
}

View File

@ -1,155 +0,0 @@
import 'dart:convert';
import 'package:omemo_dart/omemo_dart.dart';
import 'package:omemo_dart/src/trust/always.dart';
import 'package:test/test.dart';
Map<String, dynamic> jsonify(Map<String, dynamic> map) {
return jsonDecode(jsonEncode(map)) as Map<String, dynamic>;
}
void main() {
test('Test serialising and deserialising the Device', () async {
// Generate a random session
final oldSession = await OmemoSessionManager.generateNewIdentity(
'user@test.server',
AlwaysTrustingTrustManager(),
opkAmount: 1,
);
final oldDevice = await oldSession.getDevice();
final serialised = jsonify(await oldDevice.toJson());
final newDevice = OmemoDevice.fromJson(serialised);
expect(await oldDevice.equals(newDevice), true);
});
test('Test serialising and deserialising the Device after rotating the SPK',
() async {
// Generate a random session
final oldSession = await OmemoSessionManager.generateNewIdentity(
'user@test.server',
AlwaysTrustingTrustManager(),
opkAmount: 1,
);
final oldDevice =
await (await oldSession.getDevice()).replaceSignedPrekey();
final serialised = jsonify(await oldDevice.toJson());
final newDevice = OmemoDevice.fromJson(serialised);
expect(await oldDevice.equals(newDevice), true);
});
test('Test serialising and deserialising the OmemoDoubleRatchet', () async {
// Generate a random ratchet
const aliceJid = 'alice@server.example';
const bobJid = 'bob@other.server.example';
final aliceSession = await OmemoSessionManager.generateNewIdentity(
aliceJid,
AlwaysTrustingTrustManager(),
opkAmount: 1,
);
final bobSession = await OmemoSessionManager.generateNewIdentity(
bobJid,
AlwaysTrustingTrustManager(),
opkAmount: 1,
);
final aliceMessage = await aliceSession.encryptToJid(
bobJid,
'Hello Bob!',
newSessions: [
await bobSession.getDeviceBundle(),
],
);
await bobSession.decryptMessage(
aliceMessage.ciphertext,
aliceJid,
await aliceSession.getDeviceId(),
aliceMessage.encryptedKeys,
getTimestamp(),
);
final aliceOld =
aliceSession.getRatchet(bobJid, await bobSession.getDeviceId());
final aliceSerialised = jsonify(await aliceOld.toJson());
final aliceNew = OmemoDoubleRatchet.fromJson(aliceSerialised);
expect(await aliceOld.equals(aliceNew), true);
});
test('Test serialising and deserialising the OmemoSessionManager', () async {
// Generate a random session
final oldSession = await OmemoSessionManager.generateNewIdentity(
'a@server',
AlwaysTrustingTrustManager(),
opkAmount: 4,
);
final bobSession = await OmemoSessionManager.generateNewIdentity(
'b@other.server',
AlwaysTrustingTrustManager(),
opkAmount: 4,
);
await oldSession.addSessionFromBundle(
'bob@localhost',
await bobSession.getDeviceId(),
await bobSession.getDeviceBundle(),
);
// Serialise and deserialise
final serialised = jsonify(await oldSession.toJsonWithoutSessions());
final newSession = OmemoSessionManager.fromJsonWithoutSessions(
serialised,
// NOTE: At this point, we don't care about this attribute
{},
AlwaysTrustingTrustManager(),
);
final oldDevice = await oldSession.getDevice();
final newDevice = await newSession.getDevice();
expect(await oldDevice.equals(newDevice), true);
expect(await oldSession.getDeviceMap(), await newSession.getDeviceMap());
});
test('Test serializing and deserializing RatchetMapKey', () {
const test1 = RatchetMapKey('user@example.org', 1234);
final result1 = RatchetMapKey.fromJsonKey(test1.toJsonKey());
expect(result1.jid, test1.jid);
expect(result1.deviceId, test1.deviceId);
const test2 = RatchetMapKey('user@example.org/hallo:welt', 3333);
final result2 = RatchetMapKey.fromJsonKey(test2.toJsonKey());
expect(result2.jid, test2.jid);
expect(result2.deviceId, test2.deviceId);
});
test('Test serializing and deserializing the components of the BTBV manager',
() async {
// Caroline's BTBV manager
final btbv = MemoryBTBVTrustManager();
// Example data
const aliceJid = 'alice@some.server';
const bobJid = 'bob@other.server';
await btbv.onNewSession(aliceJid, 1);
await btbv.setDeviceTrust(aliceJid, 1, BTBVTrustState.verified);
await btbv.onNewSession(aliceJid, 2);
await btbv.onNewSession(bobJid, 3);
await btbv.onNewSession(bobJid, 4);
final serialized = jsonify(await btbv.toJson());
final deviceList =
BlindTrustBeforeVerificationTrustManager.deviceListFromJson(
serialized,
);
expect(btbv.devices, deviceList);
final trustCache =
BlindTrustBeforeVerificationTrustManager.trustCacheFromJson(
serialized,
);
expect(btbv.trustCache, trustCache);
final enableCache =
BlindTrustBeforeVerificationTrustManager.enableCacheFromJson(
serialized,
);
expect(btbv.enablementCache, enableCache);
});
}

View File

@ -4,7 +4,7 @@ import 'package:test/test.dart';
void main() {
test('Test the Blind Trust Before Verification TrustManager', () async {
// Caroline's BTBV manager
final btbv = MemoryBTBVTrustManager();
final btbv = BlindTrustBeforeVerificationTrustManager();
// Example data
const aliceJid = 'alice@some.server';
const bobJid = 'bob@other.server';

View File

@ -26,7 +26,8 @@ void main() {
);
// Alice does X3DH
final resultAlice = await x3dhFromBundle(bundleBob, ikAlice);
final resultAliceRaw = await x3dhFromBundle(bundleBob, ikAlice);
final resultAlice = resultAliceRaw.get<X3DHAliceResult>();
// Alice sends the inital message to Bob
// ...
@ -68,18 +69,7 @@ void main() {
);
// Alice does X3DH
var exception = false;
try {
await x3dhFromBundle(bundleBob, ikAlice);
} catch (e) {
exception = true;
expect(
e is InvalidSignatureException,
true,
reason: 'Expected InvalidSignatureException, but got $e',
);
}
expect(exception, true, reason: 'Expected test failure');
final result = await x3dhFromBundle(bundleBob, ikAlice);
expect(result.isType<InvalidKeyExchangeSignatureError>(), isTrue);
});
}