This commit is contained in:
PapaTutuWawa 2023-12-28 16:03:48 +01:00
parent d756cc559e
commit 93d6ea77c0
3 changed files with 347 additions and 187 deletions

View File

@ -1 +1,112 @@
void init_pipewire(); #ifndef __GSR_PIPEWIRE_HPP__
#define __GSR_PIPEWIRE_HPP__
#include <pipewire/pipewire.h>
#include <spa/param/audio/format-utils.h>
#include <spa/debug/types.h>
#include <spa/param/audio/type-info.h>
#include <vector>
#include <string>
#include <optional>
struct capture_config {
// The node_name to look for. If not set, then every node_name matches.
std::optional<std::string> name;
// Wether to look for an match (false) or match everything that does not
// match name (true).
bool exclude;
// Whether name refers to an application (false) or an input device (true).
bool device;
// The amount of channels to create.
int channels;
};
struct target_port {
uint32_t id;
uint32_t node_id;
const char *channel_name;
};
struct target_node {
uint32_t client_id;
uint32_t id;
const char *app_name;
};
struct target_input {
uint32_t id;
};
struct sink_port {
uint32_t id;
const char* channel;
};
struct capture_stream {
struct pw_core *core;
// The stream we will capture
struct pw_stream *stream;
// The context to use.
struct pw_context *context;
// Object to accessing global events.
struct pw_registry *registry;
// Listener for global events.
struct spa_hook registry_listener;
// The capture sink.
struct pw_proxy *sink_proxy;
// Listener for the sink events.
struct spa_hook sink_proxy_listener;
// The event loop to use.
struct pw_thread_loop *thread_loop;
// The id of the sink that we created.
uint32_t sink_id;
// The serial of the sink.
uint32_t sink_serial;
// Sequence number for forcing a server round trip
int seq;
std::vector<struct sink_port> sink_ports;
std::vector<struct target_node> nodes;
std::vector<struct target_port> ports;
std::vector<struct target_input> inputs;
struct capture_config config;
struct spa_audio_info format;
};
/*
* Returns whether the capture stream is ready to have other ports attached to it.
**/
bool capture_stream_is_ready(struct capture_stream *data);
/*
* Initialises the PipeWire API.
**/
void init_pipewire();
/*
* Creates a capture stream using the provided config.
**/
struct capture_stream create_capture_stream(struct capture_config config);
/*
* Frees the resources held by the capture stream.
**/
void free_capture_stream(struct capture_stream *data);
#endif /*__GSR_PIPEWIRE_HPP__*/

View File

@ -18,6 +18,7 @@ extern "C" {
#include <mutex> #include <mutex>
#include <map> #include <map>
#include <signal.h> #include <signal.h>
#include <optional>
#include <sys/stat.h> #include <sys/stat.h>
#include <unistd.h> #include <unistd.h>
#include <sys/wait.h> #include <sys/wait.h>
@ -1376,6 +1377,20 @@ struct Arg {
int main(int argc, char **argv) { int main(int argc, char **argv) {
init_pipewire(); init_pipewire();
/*struct capture_config config = {
.name = std::optional<std::string>("Firefox"),
.exclude = false,
.device = false,
.channels = 2,
};*/
struct capture_config config = {
.name = std::optional<std::string>("alsa_input.usb-DCMT_Technology_USB_Condenser_Microphone_214b206000000178-00.mono-fallback"),
.exclude = false,
.device = true,
.channels = 1,
};
auto cstream = create_capture_stream(config);
free_capture_stream(&cstream);
return 0; return 0;
signal(SIGINT, stop_handler); signal(SIGINT, stop_handler);

View File

@ -3,81 +3,13 @@
#include <spa/debug/types.h> #include <spa/debug/types.h>
#include <spa/param/audio/type-info.h> #include <spa/param/audio/type-info.h>
#include <vector> #include <vector>
#include <string>
#define STR(x) #x #include <optional>
#define AUDIO_CHANNELS 2 #include "../include/pipewire.hpp"
struct target_client {
const char *app_name;
const char *binary;
uint32_t id;
struct spa_hook client_listener;
};
struct target_port {
uint32_t id;
struct target_node *node;
};
struct target_node {
uint32_t client_id;
uint32_t id;
const char *app_name;
std::vector<struct target_port> ports;
};
struct sink_port {
uint32_t id;
const char* channel;
};
struct data {
struct pw_core *core;
// The stream we will capture
struct pw_stream *stream;
// The context to use.
struct pw_context *context;
// Object to accessing global events.
struct pw_registry *registry;
// Listener for global events.
struct spa_hook registry_listener;
// The capture sink.
struct pw_proxy *sink_proxy;
// Listener for the sink events.
struct spa_hook sink_proxy_listener;
// The event loop to use.
struct pw_thread_loop *thread_loop;
// The id of the sink that we created.
uint32_t sink_id;
// The serial of the sink.
uint32_t sink_serial;
// Sequence number for forcing a server round trip
int seq;
std::vector<struct sink_port> sink_ports;
std::vector<struct target_client> targets;
std::vector<struct target_node> nodes;
std::vector<struct target_port> ports;
struct spa_audio_info format;
};
static void on_process(void *userdata) static void on_process(void *userdata)
{ {
struct data *data = static_cast<struct data *>(userdata); struct capture_stream *data = static_cast<struct capture_stream *>(userdata);
struct pw_buffer *b; struct pw_buffer *b;
struct spa_buffer *buf; struct spa_buffer *buf;
@ -90,7 +22,7 @@ static void on_process(void *userdata)
if (buf->datas[0].data == NULL) if (buf->datas[0].data == NULL)
return; return;
printf("got a frame of size %d\n", buf->datas[0].chunk->size); //printf("got a frame of size %d\n", buf->datas[0].chunk->size);
pw_stream_queue_buffer(data->stream, b); pw_stream_queue_buffer(data->stream, b);
} }
@ -98,7 +30,7 @@ static void on_process(void *userdata)
static void on_param_changed(void *userdata, uint32_t id, const struct spa_pod *param) static void on_param_changed(void *userdata, uint32_t id, const struct spa_pod *param)
{ {
struct data *data = static_cast<struct data *>(userdata); struct capture_stream *data = static_cast<struct capture_stream *>(userdata);
if (param == NULL || id != SPA_PARAM_Format) if (param == NULL || id != SPA_PARAM_Format)
return; return;
@ -121,16 +53,7 @@ static void on_param_changed(void *userdata, uint32_t id, const struct spa_pod *
} }
void register_target_client(struct data *data, uint32_t id, const char* app_name) { void register_target_node(struct capture_stream *data, uint32_t id, uint32_t client_id, const char* app_name) {
struct target_client client = {};
client.binary = NULL;
client.app_name = strdup(app_name);
client.id = id;
data->targets.push_back(client);
}
void register_target_node(struct data *data, uint32_t id, uint32_t client_id, const char* app_name) {
struct target_node node = {}; struct target_node node = {};
node.app_name = strdup(app_name); node.app_name = strdup(app_name);
node.id = id; node.id = id;
@ -139,14 +62,114 @@ void register_target_node(struct data *data, uint32_t id, uint32_t client_id, co
data->nodes.push_back(node); data->nodes.push_back(node);
} }
void register_target_port(struct data *data, struct target_node *node, uint32_t id) { void register_target_port(struct capture_stream *data, uint32_t id, uint32_t node_id, const char *channel_name) {
struct target_port port = {}; struct target_port port = {};
port.id = id; port.id = id;
port.node = node; port.node_id = node_id;
port.channel_name = strdup(channel_name);
data->ports.push_back(port); data->ports.push_back(port);
} }
void register_target_input(struct capture_stream *data, uint32_t id) {
struct target_input port = {
.id = id,
};
data->inputs.push_back(port);
}
bool has_matching_node_or_input(struct capture_stream *capture, uint32_t node_id) {
// Find the corresponding node.
bool has_matching_node = false;
for (auto t : capture->nodes) {
if (t.id == node_id) {
has_matching_node = true;
break;
}
}
if (has_matching_node) {
return true;
}
// Find the corresponding input.
bool has_matching_input = false;
for (auto t : capture->inputs) {
if (t.id == node_id) {
has_matching_input = true;
break;
}
}
if (has_matching_input) {
return true;
}
return false;
}
bool connect_port_to_sink(struct capture_stream *data, uint32_t node_id, uint32_t id, const char *channel_name) {
// Find the corresponding node.
if (!has_matching_node_or_input(data, node_id)) {
printf("No matching node found\n");
return false;
}
// Find the correct sink port to attach to.
uint32_t sink_dst_port_id = 0;
for (auto sink_port : data->sink_ports) {
printf("%s = %s\n", sink_port.channel, channel_name);
if (strcmp(sink_port.channel, channel_name) == 0) {
sink_dst_port_id = sink_port.id;
break;
}
}
if (!sink_dst_port_id) {
return false;
}
// Connect the port to the sink.
struct pw_properties *link_props = pw_properties_new(
PW_KEY_OBJECT_LINGER, "false",
NULL
);
pw_properties_setf(link_props, PW_KEY_LINK_OUTPUT_NODE, "%u", node_id);
pw_properties_setf(link_props, PW_KEY_LINK_OUTPUT_PORT, "%u", id);
pw_properties_setf(link_props, PW_KEY_LINK_INPUT_NODE, "%u", data->sink_id);
pw_properties_setf(link_props, PW_KEY_LINK_INPUT_PORT, "%u", sink_dst_port_id);
printf(
"[DBG] Connecting (%d, %d) -> (%d, %d)\n",
node_id, id,
data->sink_id, sink_dst_port_id
);
struct pw_proxy *link_proxy = static_cast<struct pw_proxy *>(
pw_core_create_object(
data->core, "link-factory",
PW_TYPE_INTERFACE_Link, PW_VERSION_LINK, &link_props->dict, 0
)
);
data->seq = pw_core_sync(data->core, PW_ID_CORE, data->seq);
pw_properties_free(link_props);
if (!link_proxy) {
printf("[ERR] Failed to connect port %u of node %u to capture sink\n", id, node_id);
return false;
}
}
void connect_ports_to_sink(struct capture_stream *data) {
for (auto port : data->ports) {
printf("[DBG] Attempting to connect port %d\n", port.id);
connect_port_to_sink(
data,
port.node_id,
port.id,
port.channel_name
);
}
}
static void registry_event_global(void *raw_data, uint32_t id, static void registry_event_global(void *raw_data, uint32_t id,
uint32_t permissions, const char *type, uint32_t version, uint32_t permissions, const char *type, uint32_t version,
const struct spa_dict *props) const struct spa_dict *props)
@ -154,13 +177,12 @@ static void registry_event_global(void *raw_data, uint32_t id,
if (!type || !props) if (!type || !props)
return; return;
struct data *data = static_cast<struct data *>(raw_data); struct capture_stream *data = static_cast<struct capture_stream *>(raw_data);
if (id == data->sink_id) { if (id == data->sink_id) {
const char *serial = spa_dict_lookup(props, PW_KEY_OBJECT_SERIAL); const char *serial = spa_dict_lookup(props, PW_KEY_OBJECT_SERIAL);
if (!serial) { if (!serial) {
data->sink_serial = 0; data->sink_serial = 0;
printf("No serial found on capture sink\n");
} else { } else {
data->sink_serial = strtoul(serial, NULL, 10); data->sink_serial = strtoul(serial, NULL, 10);
} }
@ -173,91 +195,36 @@ static void registry_event_global(void *raw_data, uint32_t id,
!(dir = spa_dict_lookup(props, PW_KEY_PORT_DIRECTION)) || !(dir = spa_dict_lookup(props, PW_KEY_PORT_DIRECTION)) ||
!(chn = spa_dict_lookup(props, PW_KEY_AUDIO_CHANNEL)) !(chn = spa_dict_lookup(props, PW_KEY_AUDIO_CHANNEL))
) { ) {
printf("One or more props not set\n");
return; return;
} }
uint32_t node_id = strtoul(nid, NULL, 10); uint32_t node_id = strtoul(nid, NULL, 10);
printf("Port: node id %u\n", node_id);
if (strcmp(dir, "in") == 0 && node_id == data->sink_id && data->sink_id != SPA_ID_INVALID) { if (strcmp(dir, "in") == 0 && node_id == data->sink_id && data->sink_id != SPA_ID_INVALID) {
printf("=======\n"); // This port belongs to our own capture sink.
printf("Found our own sink's port: %d sink_id %d channel %s\n", id, data->sink_id, chn); printf("[DBG] Own sink %d (%s) found\n", id, chn);
printf("=======\n");
data->sink_ports.push_back( data->sink_ports.push_back(
{ id, strdup(chn), } { id, strdup(chn), }
); );
} else if (strcmp(dir, "out") == 0) { } else if (strcmp(dir, "out") == 0) {
if (data->sink_id == SPA_ID_INVALID) { if (!capture_stream_is_ready(data)) {
printf("Want to process port %d but sink_id is invalid\n", id); // We're not ready to connect streams, so just track it for later.
return; printf("[DBG] Capture sink is not ready yet for %d\n", id);
} register_target_port(
struct target_node *n = NULL; data,
for (auto t : data->nodes) { id,
if (t.id == node_id) { node_id,
n = &t; chn
break; );
}
}
if (!n) {
printf("Target not found\n");
return;
}
printf("Target found\n");
uint32_t p = 0;
for (auto sink_port : data->sink_ports) {
printf("%s = %s\n", sink_port.channel, chn);
if (strcmp(sink_port.channel, chn) == 0) {
p = sink_port.id;
break;
}
}
if (!p) {
printf("Failed to find port for channel %s of port %d\n", chn, id);
return; return;
} }
struct pw_properties *link_props = pw_properties_new( connect_port_to_sink(
PW_KEY_OBJECT_LINGER, "false", data,
NULL node_id,
id,
chn
); );
pw_properties_setf(link_props, PW_KEY_LINK_OUTPUT_NODE, "%u", node_id);
pw_properties_setf(link_props, PW_KEY_LINK_OUTPUT_PORT, "%u", id);
pw_properties_setf(link_props, PW_KEY_LINK_INPUT_NODE, "%u", data->sink_id);
pw_properties_setf(link_props, PW_KEY_LINK_INPUT_PORT, "%u", p);
printf(
"Connecting (%d, %d) -> (%d, %d)\n",
node_id, id,
data->sink_id, p
);
struct pw_proxy *link_proxy = static_cast<struct pw_proxy *>(
pw_core_create_object(
data->core, "link-factory",
PW_TYPE_INTERFACE_Link, PW_VERSION_LINK, &link_props->dict, 0
)
);
data->seq = pw_core_sync(data->core, PW_ID_CORE, data->seq);
pw_properties_free(link_props);
if (!link_proxy) {
printf("!!!!! Failed to connect port %u of node %u to capture sink\n", id, node_id);
return;
}
printf("Connected!\n");
} }
} else if (strcmp(type, PW_TYPE_INTERFACE_Client) == 0) {
const char *client_app_name = spa_dict_lookup(props, PW_KEY_APP_NAME);
printf("Client: app name %s id %d\n", client_app_name, id);
register_target_client(
data,
id,
client_app_name
);
} else if (strcmp(type, PW_TYPE_INTERFACE_Node) == 0) { } else if (strcmp(type, PW_TYPE_INTERFACE_Node) == 0) {
const char *node_name, *media_class; const char *node_name, *media_class;
if (!(node_name = spa_dict_lookup(props, PW_KEY_NODE_NAME)) || if (!(node_name = spa_dict_lookup(props, PW_KEY_NODE_NAME)) ||
@ -265,19 +232,29 @@ static void registry_event_global(void *raw_data, uint32_t id,
return; return;
} }
printf("Node: media_class %s node_app %s id %d\n", media_class, node_name, id);
if (strcmp(media_class, "Stream/Output/Audio") == 0) { if (strcmp(media_class, "Stream/Output/Audio") == 0) {
const char *node_app_name = spa_dict_lookup(props, PW_KEY_APP_NAME); const char *node_app_name = spa_dict_lookup(props, PW_KEY_APP_NAME);
if (!node_app_name) { if (!node_app_name) {
node_app_name = node_name; node_app_name = node_name;
} }
if (data->config.name.has_value()) {
bool matches = strcmp(
node_app_name,
data->config.name.value().c_str()
) == 0;
printf("[DBG] Node: name %s matches %d exclude %d\n", node_app_name, matches, data->config.exclude);
if (!(matches ^ data->config.exclude)) {
return;
}
}
uint32_t client_id = 0; uint32_t client_id = 0;
const char *client_id_str = spa_dict_lookup(props, PW_KEY_CLIENT_ID); const char *client_id_str = spa_dict_lookup(props, PW_KEY_CLIENT_ID);
if (client_id_str) { if (client_id_str) {
client_id = strtoul(client_id_str, NULL, 10); client_id = strtoul(client_id_str, NULL, 10);
} }
register_target_node( register_target_node(
data, data,
@ -285,6 +262,17 @@ static void registry_event_global(void *raw_data, uint32_t id,
client_id, client_id,
node_app_name node_app_name
); );
} else if (strcmp(media_class, "Audio/Source") == 0) {
if (!data->config.device || data->config.exclude || !data->config.name.has_value()) {
return;
}
if (strcmp(node_name, data->config.name.value().c_str()) != 0) {
return;
}
printf("[DBG] Tracking input source %d (%s)\n", id, node_name);
register_target_input(data, id);
} }
} }
} }
@ -301,9 +289,9 @@ static const struct pw_registry_events registry_events = {
}; };
static void on_sink_proxy_bound(void *userdata, uint32_t global_id) { static void on_sink_proxy_bound(void *userdata, uint32_t global_id) {
struct data *data = static_cast<struct data*>(userdata); struct capture_stream *data = static_cast<struct capture_stream *>(userdata);
data->sink_id = global_id; data->sink_id = global_id;
printf("Got id %d\n", global_id); printf("[DBG] Got proxy sink id %d\n", global_id);
} }
static void on_sink_proxy_error(void *data, int seq, int res, const char *message) static void on_sink_proxy_error(void *data, int seq, int res, const char *message)
@ -318,15 +306,61 @@ static const struct pw_proxy_events sink_proxy_events = {
}; };
void init_pipewire() { void init_pipewire() {
struct data data = { pw_init(NULL, NULL);
}
bool capture_stream_is_ready(struct capture_stream *data) {
return data->sink_id != SPA_ID_INVALID &&
data->sink_serial != SPA_ID_INVALID &&
data->sink_ports.size() == data->config.channels;
}
enum spa_audio_channel *channel_num_to_channels(int num) {
enum spa_audio_channel channels[8];
if (num == 1) {
// Mono
channels[0] = SPA_AUDIO_CHANNEL_MONO;
channels[1] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[2] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[3] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[4] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[5] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[6] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[7] = SPA_AUDIO_CHANNEL_UNKNOWN;
} else if (num == 2) {
// Probably FL,FR.
channels[0] = SPA_AUDIO_CHANNEL_FL;
channels[1] = SPA_AUDIO_CHANNEL_FL;
channels[2] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[3] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[4] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[5] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[6] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[7] = SPA_AUDIO_CHANNEL_UNKNOWN;
}
return channels;
}
const char *channel_num_to_position(int num) {
if (num == 1) {
return "MONO";
} else if (num == 2) {
return "FL,FR";
}
}
struct capture_stream create_capture_stream(struct capture_config config) {
struct capture_stream data = {
0, 0,
sink_id: SPA_ID_INVALID, sink_id: SPA_ID_INVALID,
sink_serial: 0, sink_serial: SPA_ID_INVALID,
seq: 0, seq: 0,
sink_ports: std::vector<struct sink_port> {}, sink_ports: std::vector<struct sink_port> {},
targets: std::vector<struct target_client> {},
nodes: std::vector<struct target_node> {}, nodes: std::vector<struct target_node> {},
ports: std::vector<struct target_port> {}, ports: std::vector<struct target_port> {},
inputs: std::vector<struct target_input> {},
config: config,
}; };
const struct spa_pod *params[1]; const struct spa_pod *params[1];
uint8_t buffer[2048]; uint8_t buffer[2048];
@ -346,6 +380,8 @@ void init_pipewire() {
pw_core_sync(data.core, PW_ID_CORE, 0); pw_core_sync(data.core, PW_ID_CORE, 0);
//pw_thread_loop_wait(data.thread_loop); //pw_thread_loop_wait(data.thread_loop);
pw_thread_loop_unlock(data.thread_loop); pw_thread_loop_unlock(data.thread_loop);
char numbuf[2];
sprintf(numbuf, "%d", data.config.channels);
props = pw_properties_new( props = pw_properties_new(
PW_KEY_MEDIA_TYPE, "Audio", PW_KEY_MEDIA_TYPE, "Audio",
@ -353,8 +389,8 @@ void init_pipewire() {
PW_KEY_MEDIA_ROLE, "Screen", PW_KEY_MEDIA_ROLE, "Screen",
PW_KEY_NODE_NAME, "GSR", PW_KEY_NODE_NAME, "GSR",
PW_KEY_NODE_VIRTUAL, "true", PW_KEY_NODE_VIRTUAL, "true",
PW_KEY_AUDIO_CHANNELS, "" STR(AUDIO_CHANNELS) "", PW_KEY_AUDIO_CHANNELS, numbuf,
SPA_KEY_AUDIO_POSITION, "FL,FR", SPA_KEY_AUDIO_POSITION, channel_num_to_position(data.config.channels),
PW_KEY_FACTORY_NAME, "support.null-audio-sink", PW_KEY_FACTORY_NAME, "support.null-audio-sink",
PW_KEY_MEDIA_CLASS, "Audio/Sink/Internal", PW_KEY_MEDIA_CLASS, "Audio/Sink/Internal",
NULL NULL
@ -379,29 +415,25 @@ void init_pipewire() {
printf("Listener registered\n"); printf("Listener registered\n");
printf("Waiting for id\n"); printf("Waiting for id\n");
while (data.sink_id == SPA_ID_INVALID || data.sink_serial == 0) { while (!capture_stream_is_ready(&data)) {
printf("Poll\n"); printf("Poll\n");
pw_loop_iterate(pw_thread_loop_get_loop(data.thread_loop), -1); pw_loop_iterate(pw_thread_loop_get_loop(data.thread_loop), -1);
} }
printf("Got id\n"); printf("Node Setup complete\n");
enum spa_audio_channel channels[8]; // Connect delayed ports to the sink
channels[0] = SPA_AUDIO_CHANNEL_FL; //pw_thread_loop_lock(data.thread_loop);
channels[1] = SPA_AUDIO_CHANNEL_FL; connect_ports_to_sink(&data);
channels[2] = SPA_AUDIO_CHANNEL_UNKNOWN; //pw_thread_loop_unlock(data.thread_loop);
channels[3] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[4] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[5] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[6] = SPA_AUDIO_CHANNEL_UNKNOWN;
channels[7] = SPA_AUDIO_CHANNEL_UNKNOWN;
auto channels = channel_num_to_channels(data.config.channels);
params[0] = spa_pod_builder_add_object( params[0] = spa_pod_builder_add_object(
&b, &b,
SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat, SPA_TYPE_OBJECT_Format, SPA_PARAM_EnumFormat,
SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio), SPA_FORMAT_mediaType, SPA_POD_Id(SPA_MEDIA_TYPE_audio),
SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw), SPA_FORMAT_mediaSubtype, SPA_POD_Id(SPA_MEDIA_SUBTYPE_raw),
SPA_FORMAT_AUDIO_channels, SPA_POD_Int(AUDIO_CHANNELS), SPA_FORMAT_AUDIO_channels, SPA_POD_Int(data.config.channels),
SPA_FORMAT_AUDIO_position, SPA_POD_Array(sizeof(enum spa_audio_channel), SPA_TYPE_Id, AUDIO_CHANNELS, channels), SPA_FORMAT_AUDIO_position, SPA_POD_Array(sizeof(enum spa_audio_channel), SPA_TYPE_Id, data.config.channels, channels),
SPA_FORMAT_AUDIO_format, SPA_POD_CHOICE_ENUM_Id( SPA_FORMAT_AUDIO_format, SPA_POD_CHOICE_ENUM_Id(
8, SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S32_LE, 8, SPA_AUDIO_FORMAT_U8, SPA_AUDIO_FORMAT_S16_LE, SPA_AUDIO_FORMAT_S32_LE,
SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_S16P, SPA_AUDIO_FORMAT_F32_LE, SPA_AUDIO_FORMAT_U8P, SPA_AUDIO_FORMAT_S16P,
@ -448,10 +480,12 @@ void init_pipewire() {
while (true) { while (true) {
pw_loop_iterate(pw_thread_loop_get_loop(data.thread_loop), -1); pw_loop_iterate(pw_thread_loop_get_loop(data.thread_loop), -1);
} }
}
pw_proxy_destroy((struct pw_proxy *) data.registry); void free_capture_stream(struct capture_stream *data) {
pw_proxy_destroy(data.sink_proxy); pw_proxy_destroy((struct pw_proxy *) data->registry);
pw_stream_destroy(data.stream); pw_proxy_destroy(data->sink_proxy);
pw_context_destroy(data.context); pw_stream_destroy(data->stream);
pw_thread_loop_destroy(data.thread_loop); pw_context_destroy(data->context);
pw_thread_loop_destroy(data->thread_loop);
} }